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Coupled spring equations for modelling the motion of two springs with
weights attached, hung in series from the ceiling are described. For the linear
model using Hooke’s Law, the motion of each weight is described by a fourth-
order linear differential equation. A nonlinear model is also described and
damping and external forcing are considered. The model has many features that
permit the meaningful introduction of many concepts including: accuracy of
numerical algorithms, dependence on parameters and initial conditions, phase
and synchronization, periodicity, beats, linear and nonlinear resonance, limit
cycles, harmonic and subharmonic solutions. These solutions produce a wide
variety of interesting motions and the model is suitable for study as a computer
laboratory project in a beginning course on differential equations or as an
individual or a small-group undergraduate research project.

1. Introduction
The classical syllabus for beginning differential equations is rapidly changing

from emphasizing solution techniques for a variety of types of differential
equations to emphasizing systems and more qualitative aspects of the theory of
ordinary differential equations. In particular, there is an emphasis on nonlinear
equations due largely to the wide availability of high powered numerical algor-
ithms and almost effortless graphics capabilities that come with computer algebra
systems such as Mathematica and Maple.

In this article, we investigate an old problem that appears now to be relegated
to the exercises in texts, if it appears at all (see for example [1, pp. 220–221]). This
is the problem of two springs and two weights attached in series, hanging from the
ceiling. Under the assumption that the restoring forces behave according to
Hooke’s Law, this two degrees of freedom problem is modelled by a pair of
coupled, second-order, linear differential equations. By differentiating and sub-
stituting one equation into the other, the motion of each weight can be shown to be
determined by a linear, fourth-order differential equation. We like this example for
this very reason, most models in elementary texts are only of second order.
Moreover, the questions about phase now have a very nice physical interpretation;
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we can investigate when the motions of the two weights are synchronized (in
phase) or opposing each other (1808 out of phase). By tinkering with the spring
constants, oscillatory motions can be produced that are much more interesting
than those obtained from the classical single spring model. Moreover, there are
other phenomena that can be investigated.

We also demonstrate, through examples, that interesting motions can arise
when a slight nonlinearity is introduced in an attempt to make the restoring force
more physically meaningful. In this situation, periodicity of the solutions becomes
a more delicate matter. If forcing is introduced, subharmonic solutions of long
periods can be found which again exhibit more interesting motions than for the
classical linear case.

There is the opportunity here for many numerical and graphical investigations
to be made by students. Periodicity, amplitude, phase, sensitivity to inital con-
ditions, and many more concepts can be investigated by modifying the parameters
in the model. And of course, it would not be difficult for students to derive a model
for three springs and three weights (or more), and to investigate the various
motions that could arise from both linear and nonlinear restoring forces.

2. The coupled spring model
The model consists of two springs and two weights. One spring, having spring

constant k1, is attached to the ceiling and a weight of mass m1 is attached to the
lower end of this spring. To this weight, a second spring is attached having spring
constant k2. To the bottom of this second spring, a weight of mass m2 is attached
and the entire system appears as illustrated in figure 1.

Allowing the system to come to rest in equilibrium, we measure the displace-
ment of the centre of mass of each weight from equilibrium, as a function of time,
and denote these measurements by x1ðtÞ and x2ðtÞ respectively.

2.1. Assuming Hooke’s Law
Under the assumption of small oscillations, the restoring forces are of the

form �k1l1 and �k2l2 where l1 and l2 are the elongations (or compressions) of
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Figure 1. The coupled springs.



the two springs. Since the upper mass is attached to both springs, there are
two restoring forces acting upon it: an upward restoring force �k1x1 exerted by
the elongation (or compression) x1 of the first spring; an upward force �k2ðx2 � x1Þ
from the second spring’s resistance to being elongated (or compressed) by
the amount x2 � x1. The second mass only ‘feels’ the restoring force from
the elongation (or compression) of the second spring. If we assume there are no
damping forces present, then Newton’s Law implies that the two equations
representing the motions of the two weights are

m1€xx1 ¼ �k1x1 � k2ðx1 � x2Þ

m2€xx2 ¼ �k2ðx2 � x1Þ
ð2:1Þ

Thus we have a pair of coupled second-order linear differential equations.
In order to find an equation for x1 that doesn’t involve x2, we solve the first

equation for x2, obtaining

x2 ¼
m1€xx1
k2

þ k1 þ k2
k2

x1 ð2:2Þ

Substituting for x2 in the second differential equation (2.1), and simplifying, we
obtain

m1m2x
ð4Þ
1 þ ðm2k1 þ k2ðm1 þ m2ÞÞ€xx1 þ k1k2x1 ¼ 0 ð2:3Þ

Hence the motion of the first weight is determined by this fourth-order linear
differential equation.

Now to find an equation that only involves x2, we solve the second equation
(2.1) for x1:

x1 ¼
m2

k2
€xx2 þ x2 ð2:4Þ

and substitute into the first equation (2.1), producing the equation

m1m2x
ð4Þ
2 þ ðm2k1 þ k2ðm1 þ m2ÞÞ€xx2 þ k1k2x2 ¼ 0 ð2:5Þ

This is exactly the same fourth-order equation as that for the motion of the first
weight. Thus the motions of each weight obey the same differential equation, and
it is only the initial displacements and initial velocities that are needed in order to
completely determine any specific case.

Typically, in a model of this sort, we would be given the initial displacements
x1ð0Þ and x2ð0Þ, and the initial velocities _xx1ð0Þ and _xx2ð0Þ. But in order to solve
equations (2.3) and (2.5), we need to know the values of €xx1ð0Þ, xEEE1ð0Þ, €xx2ð0Þ and
xEEE2ð0Þ. The values of the second derivatives are determined by evaluating equations
(2.2) and (2.4) at time t ¼ 0. The values of the third derivatives are obtained by
evaluating the derivatives of equations (2.2) and (2.4) at time t ¼ 0. Thus the
motions for any set of initial conditions are determined by solving two fourth-
order initial value problems.

Alternatively, we can turn this pair of coupled second-order equations into a
system of four first-order equations by setting _xx1 ¼ u and _xx2 ¼ v, so we have
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_xx1 ¼ u

_uu ¼ � k1
m1

x1 �
k2
m1

ðx1 � x2Þ

_xx2 ¼ v

_vv ¼ � k2
m2

ðx2 � x1Þ

ð2:6Þ

and we need only consider the four initial conditions x1ð0Þ, uð0Þ, x2ð0Þ, and vð0Þ.

2.2. Some examples with identical weights
Let us consider the model having the two weights of the same mass. This

model may be normalized by setting m1 ¼ m2 ¼ 1. In the case of no damping and
no external forcing, the characteristic equation of the differential equations (2.3)
and (2.5) is

m4 þ ðk1 þ 2k2Þm2 þ k1k2 ¼ 0 ð2:7Þ

which has the roots

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1
2k1 � k2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 4k22

qr
ð2:8Þ

Example 2.1. Describe the motion for spring constants k1 ¼ 6 and k2 ¼ 4 with
initial conditions ðx1ð0Þ; _xx1ð0Þ, x2ð0Þ, _xx2ð0ÞÞ ¼ ð1; 0; 2; 0Þ.

It is easy to see that the roots of the characteristic equation are �
ffiffiffi
2

p
i and

�2
ffiffiffi
3

p
i. Thus the general solution to equations (2.3) and (2.5) is

xðtÞ ¼ c1 cos
ffiffiffi
2

p
tþ c2 sin

ffiffiffi
2

p
tþ c3 cos 2

ffiffiffi
3

p
tþ c4 sin 2

ffiffiffi
3

p
t ð2:9Þ

It is also easy to compute that ðx1ð0Þ; _xx1ð0Þ; €xx1ð0Þ; xEEE1ð0ÞÞ ¼ ð1; 0;�2; 0Þ. This leads
to the two pairs of simultaneous equations

c1 þ c3 ¼ 1
ffiffiffi
2

p
c2 þ 2

ffiffiffi
3

p
c4 ¼ 0

�2c1 � 12c3 ¼ �2 � 2
ffiffiffi
2

p
c2 � 24

ffiffiffi
3

p
c4 ¼ 0

ð2:10Þ

whose solutions are c1 ¼ 1, c3 ¼ 0, and c2 ¼ c4 ¼ 0. Thus the unique solution for
x1ðtÞ is

x1ðtÞ ¼ cos
ffiffiffi
2

p
t ð2:11Þ

It is also easy to compute that ðx2ð0Þ; _xx2ð0Þ; €xx2ð0Þ; xEEE2ð0ÞÞ ¼ ð2; 0;�2; 0Þ. This leads
to the two pairs of simultaneous equations

c1 þ c3 ¼ 2
ffiffiffi
2

p
c2 þ 2

ffiffiffi
3

p
c4 ¼ 0

�2c1 � 12c3 ¼ �4 � 2
ffiffiffi
2

p
c2 � 24

ffiffiffi
3

p
c4 ¼ 0

ð2:12Þ

whose solutions are c1 ¼ 2, c3 ¼ 0, and c2 ¼ c4 ¼ 0. The unique solution for x2ðtÞ is

x2ðtÞ ¼ 2 cos
ffiffiffi
2

p
t ð2:13Þ
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The motion here is synchronized and thus the weights move in phase with each
other, having the same period of motion, merely having different amplitudes; this
is shown in figure 2.1. Since the motion is simple periodic motion, the phase
portraits for x1 and x2 are simple closed curves (ellipses) as shown in the left-hand
frame in figure 2.2. Shown in the right-hand frame of figure 2.2 is a plot of x1
against x2; observe this plot is a straight line of slope 2.

The next example illustrates 1808 out of phase motion.

Example 2.2. Describe the motion for spring constants k1 ¼ 6 and k2 ¼ 4 with
initial conditions ðx1ð0Þ; _xx1ð0Þ; x2ð0Þ; _xx2ð0ÞÞ ¼ ð�2; 0; 1; 0Þ.

In this example, for x1, we have c1 ¼ 0, c3 ¼ �2, and c2 ¼ c4 ¼ 0, and accord-
ingly
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Figure 2.1. Plot of x1 and x2 showing synchronized motion.

Figure 2.2. Plots for Example 2.1.



x1ðtÞ ¼ �2 cos 2
ffiffiffi
3

p
t ð2:14Þ

For x2, we have c1 ¼ 0, c3 ¼ 1, and c2 ¼ c4 ¼ 0; thus

x2ðtÞ ¼ cos 2
ffiffiffi
3

p
t ð2:15Þ

While the first weight is moving downward, the second weight is moving upward
and when the first is moving upward, the second is moving downward. Again both
motions have the same period, the motions are 1808 out of phase. This is shown in
the left-hand frame of figure 2.3. In the right-hand frame we plot x1 against x2 and
observe a straight line of slope �1.

Generally speaking, the motions of the two weights will not be periodic, since
the solutions for x1 and x2 are linear combinations of sin

ffiffiffi
2

p
t, cos

ffiffiffi
2

p
t, sin 2

ffiffiffi
3

p
t,

and cos 2
ffiffiffi
3

p
t and the ratio of the frequencies

ffiffiffi
2

p
and 2

ffiffiffi
3

p
is not rational. For more

on the period of such combinations we refer the reader to [2].
By tinkering with the parameters in this model, more interesting motions than

those just described can be obtained.

Example 2.3. Describe the motion for spring constants k1 ¼ 0:4 and
k2 ¼ 1:808 with initial conditions ðx1ð0Þ; _xx1ð0Þ; x2ð0Þ; _xx2ð0ÞÞ ¼ ð1=2; 0;�1=2; 7=10Þ.

From equation (2.8), we see that it is the k1 and k2 values that completely
determine the period and hence frequency of the response of this symmetric
weight problem. Essentially the initial conditions only affect the amplitude and
phase of the solutions. Thus, using a numerical solver and ‘tweaking’ the k values
and experimenting with the initial conditions led to the choice of parameters in this
example. This type of numerical and graphical interactive investigation can be
carried out with a computer algebra system almost effortlessly. The phase portraits
for the two solutions are shown in the top row of figure 2.4. These portraits show
an interesting (almost?) period motion. Plots of the actual solutions are shown in
the middle row. Plotting both solutions together on the same coordinate system
also shows an interesting pattern. This is shown in the left-hand frame of the
bottom row of figure 2.4. Finally, the plot of x1 against x2 shown in the right-hand
frame of the bottom row of figure 2.4 appears to be a Lissajous type curve.

Student problem. Verify analytically the solutions to this initial value problem
are periodic. Find the period. Use the analytic solution to produce other periodic
motions.
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Figure 2.3. Plots for Example 2.2.



2.3. Damping

The most common type of damping encountered in beginning courses is that of

viscous damping; the damping force is proportional to the velocity. The damping

of the first weight depends solely on its velocity and not the velocity of the second

weight, and vice versa. We add viscous damping to the model by adding the term
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��1 _xx1 to the first equation and ��2 _xx2 to the second equation (2.1). We assume that
the damping coefficients �1 and �2 are small. The model becomes

m1€xx1 ¼ ��1 _xx1 � k1x1 � k2ðx1 � x2Þ

m2€xx2 ¼ ��2 _xx2 � k2ðx2 � x1Þ ð2:16Þ

To obtain an equation for the motion x1 which does not involve x2, we solve the
first equation (2.16) for x2 and substitute into the second equation (2.16) to obtain

m1m2x
ð4Þ
1 þ ðm1�1 þm2�2ÞxEEE1 þ ðm2k1 þ k2ðm1 þ m2Þ þ �1�2Þ€xx1

þðk1�2 þ k2ð�1 þ �2Þ _xx1 þ k1k2x1 ¼ 0 ð2:17Þ

In a similar manner, we may solve the second equation (2.16) for x1 and substitute
into the first equation to obtain a fourth-order equation that involves only x2. We
obtain

m1m2x
ð4Þ
2 þ ðm1�1 þ m2�2ÞxEEE2 þ ðm2k1 þ k2ðm1 þ m2Þ þ �1�2Þ€xx2

þðk1�2 þ k2ð�1 þ �2Þ _xx2 þ k1k2x2 ¼ 0 ð2:18Þ

So once again we have the same linear differential equation representing the
motion of both weights.

The roots of the characteristic equation are now more complicated to discuss in
general, but not surprisingly, we obtain damped oscillatory motion for both
weights under simple assumptions on the parameters.

Example 2.4. Assume m1 ¼ m2 ¼ 1. Describe the motion for spring constants
k1 ¼ 0:4 and k2 ¼ 1:808, damping coefficients �1 ¼ 0:1 and �2 ¼ 0:2, with initial
conditions ðx1ð0Þ; _xx1ð0Þ; x2ð0Þ; _xx2ð0ÞÞ ¼ ð1; 1=2; 2; 1=2Þ.

The phase portraits for x1 and x2 are shown in the top row of figure 2.5; one
sees a regular pattern of motion with diminishing amplitude. Damped oscillatory
motion is evident in plots of the solutions shown in the middle row; and in the left-
hand frame of the bottom row, we plot both x1 and x2 and observe nearly
synchronized motion. Finally, in the right-hand frame of the bottom row, we
plot x1 versus x2 which also shows damped oscillatory motion of both weights.

Student problem. Investigate the model when �1 ¼ 0 and �2 > 0. What hap-
pens if �1 > 0 and �2 ¼ 0?

Student problem. What are the conditions on the parameters of the model that
give rise to critically damped motion and over-critically damped motion, or do
these concepts not apply to this model?

3. Adding nonlinearity
If we assume that the restoring forces are nonlinear, which they most certainly

are for large vibrations, we can modify the model accordingly. Rather than
assuming that the restoring force is of the form �kx (Hooke’s law), suppose we
assume the restoring force has the form �kxþ �x3. Then our model becomes
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m1€xx1 ¼ ��1 _xx1 � k1x1 þ �1x
3
1 � k2ðx1 � x2Þ þ �2ðx1 � x2Þ3

m2€xx2 ¼ ��2 _xx2 � k2ðx2 � x1Þ þ �2ðx2 � x1Þ3 ð3:1Þ

The range of motions for the nonlinear model is much more complicated than that
for the linear model. To get an idea of this range of motions for a single spring
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Figure 2.5. Plots for Example 2.4.



model see [4]. Moreover, accuracy questions arise when solving these equations.
No numerical solver can be expected to remain accurate over long time intervals.
The accumulated local truncation error, algorithm error, roundoff error, propaga-
tion error, etc., eventually force the numerical solution to be inaccurate. This is
discussed in some detail in the interesting paper by Knapp and Wagon [7], see also
[3] and [5].

Example 3.1. Assume m1 ¼ m2 ¼ 1. Describe the motion for spring constants
k1 ¼ 0:4 and k2 ¼ 1:808, damping coefficients �1 ¼ 0 and �2 ¼ 0, nonlinear
coefficients �1 ¼ �1=6 and �2 ¼ �1=10, with initial conditions
ðx1ð0ÞÞ; _xx1ð0Þ; x2ð0Þ; _xx2ð0ÞÞ ¼ ð1; 0;�1=2; 0Þ.

The motion in this example is quite nice. We have no damping, so the motions
are oscillatory and appear to be periodic (for more on detecting and describing
periodic solutions to nonlinear differential equations see [6]). Phase plane trajec-
tories are shown in the top row of figure 3.1 for 04 t4 50; solutions are shown in
the middle row. A plot of x1 and x2 shows the motions that appear to be 1808 out of
phase, see the left-hand frame of the bottom row. A plot of x1 against x2 is given in
the right-hand frame.

Because of the nonlinearity, the model may exhibit sensitivity to initial
conditions.

Example 3.2. Assume m1 ¼ m2 ¼ 1. Describe the motion for spring constants
k1 ¼ 0:4 and k2 ¼ 1:808, damping coefficients �1 ¼ 0 and �2 ¼ 0, nonlinear coeffi-
cients �1 ¼ �1=6 and �2 ¼ �1=10, with initial conditions ðx1ð0Þ; _xx1ð0Þ; x2ð0Þ;
_xx2ð0ÞÞ ¼ ð�0:5; 1=2; 3:001; 5:9Þ.

Phase plots and a plot of x1 versus x2 are shown in figures 3.2 and 3.3. Very
pleasing motions can be observed here. Next we change only the x1ð0Þ value by 1/
10, and we obtain quite different motions.

Example 3.3. Assume m1 ¼ m2 ¼ 1. Describe the motion for spring constants
k1 ¼ 0:4 and k2 ¼ 1:808, damping coefficients �1 ¼ 0 and �2 ¼ 0, nonlinear coeffi-
cients �1 ¼ �1=6 and �2 ¼ �1=10, with initial conditions ðx1ð0Þ; _xx1ð0Þ; x2ð0Þ;
_xx2ð0ÞÞ ¼ ð�0:6; 1=2; 3:001; 5:9Þ.

The phase plots for this example are shown in figure 3.4 for 04 t4 200. A plot
of x1 versus x2 is shown in figure 3.5.

4. Adding forcing
It is a simple matter to add external forcing to the model. Indeed, we can drive

each weight differently. Suppose we assume simple sinusoidal forcing of the form
F cos!t. Then the model becomes

m1€xx1 ¼ ��1 _xx1 � k1x1 þ �1x
3
1 � k2ðx1 � x2Þ þ �2ðx1 � x2Þ3 þ F1 cos!1t

m2€xx2 ¼ ��2 _xx2 � k2ðx2 � x1Þ þ �2ðx2 � x1Þ3 þ F2 cos!2t ð4:1Þ

The range of motions for nonlinear forced models is quite vast. We can expect to
find bounded and unbounded solutions (nonlinear resonance), periodic solutions
that share the period with the forcing (called harmonic solutions) and solutions
that are periodic of period a multiple of the driving period (called subharmonic
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solutions), and steady state periodic solutions (limit cycles in the phase plane). The
conditions under which these motions occur are by no means easy to state. We
conclude with a simple forced example.

Example 4.1. Assume m1 ¼ m2 ¼ 1. Describe the motion for spring constants
k1 ¼ 2=5 and k2 ¼ 1, damping coefficients �1 ¼ 1=10 and �2 ¼ 1=5, nonlinear
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Figure 3.1. Plots for Example 3.1.
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Figure 3.2. Phase plots for Example 3.2.

Figure 3.3. x1 versus x2, 04 t4 200, for Example 3.2.



Coupled spring equations 77

Figure 3.4. Phase plots for Example 3.3.

Figure 3.5. x1 versus x2, 04 t4 200, for Example 3.3.



coefficients �1 ¼ 1=6 and �2 ¼ 1=10, forcing amplitudes F1 ¼ 1=3 and F2 ¼ 1=5,
and forcing frequencies !1 ¼ 1 and !2 ¼ 3=5, with initial conditions
ðx1ð0Þ; _xx1ð0Þ; x2ð0Þ; _xx2ð0ÞÞ ¼ ð0:7; 0; 0:1; 0Þ.

Because of the damping, we expect to see different behaviour for small values of
t and steady-state behaviour for large values of t. Thus we can expect to see a limit
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cycle in the phase plane for both x1 and for x2. The trajectories and limit cycles are
shown in the top and middle rows of figures 4.1. In the bottom row we show plots
of x1 and x2 for 04 t4 150. In the left-hand frame of figure 4.2, we plot both x1
and x2 for 1104 t4 170 to show the steady-state solutions more clearly. We plot
x1 against x2 in the steady state in the right-hand frame.

5. Conclusions
We have developed a simple model for two coupled springs, examined both the

linear case and one possible form for the nonlinear case, and have included free
motion, damped motion, and forced motion examples. These examples produced
interesting solutions and are no more difficult for a student to produce than the
elementary examples commonly encountered in beginning courses. This model
reinforces much of the theory for linear equations and provides a nice elementary
modelling example that can be used in a computer laboratory component of a
beginning course or for an individual or a small-group undergraduate research
project.

The model has many features that permit the meaningful introduction of many
concepts including: accuracy of numerical algorithms, dependence on parameters
and initial conditions, phase and synchronization, periodicity, beats, limit cycles,
harmonic and subharmonic solutions. The use of a computer algebra system
permits almost effortless numerical explorations, graphical interpretations, and
motivation for analytical verifications.
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Figure 4.2. Plot of x1 and x2 for Example 4.1.




