
Ordinary Differential Equations

A Linear Algebra Perspective
(Version 1.75)

L

mg

F(t)



mg sin

F(t) cos

Todd Kapitula



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Essentials of Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Solving linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Solutions of linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.3 Solving by Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Vector algebra and matrix/vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.1 Linear combinations of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Matrix/vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Matrix algebra: addition, subtraction, and multiplication . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Sets of linear combinations of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.1 Span of a set of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.2 Linear independence of a set of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.3 Linear independence of a set of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 The structure of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.5.1 The homogeneous solution and the null space . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.5.2 The particular solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.6 Equivalence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.1 A solution exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.2 A solution always exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.6.3 A unique solution exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.6.4 A unique solution always exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.7 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7.2 Subspaces and span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7.3 The column space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.8 Basis and dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.8.1 Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.8.2 Dimension and rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.9 Inner-products and orthogonal bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.9.1 The inner-product on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.9.2 Orthonormal bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.9.3 Orthonormal bases and Fourier expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.9.4 The Gram-Schmidt procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
1.9.5 Fourier expansions with trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . 71

i



ii Contents

1.10 The matrix transpose, and two more subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
1.10.1 Subspace relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.10.2 Least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1.11 Matrix algebra: the inverse of a square matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
1.12 The determinant of a square matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.13 Linear algebra with complex-valued numbers, vectors, and matrices . . . . . . . . . . . 92
1.14 Eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

1.14.1 Characterization of eigenvalues and eigenvectors . . . . . . . . . . . . . . . . . . . . . . . 98
1.14.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.14.3 Eigenvectors as a basis, and Fourier expansions . . . . . . . . . . . . . . . . . . . . . . . . 106

1.15 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.15.1 Voter registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.15.2 Discrete SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
1.15.3 Northern spotted owl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Group projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

MATLAB support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Answers to selected exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



Introduction

ch:intro

This book arose from lecture notes that I began to develop in 2010-2011 for a first course in or-
dinary differential equations (ODEs). At Calvin College the students in this course are primarily
engineers. In our engineering program it is generally the case that the only (formal) linear al-
gebra the students see throughout their undergraduate career is what is presented in the ODE
course. This is not unusual, as the ABET Accreditation Criteria of 2012-13 do not explicitly
require a course devoted to the study of linear algebra. Since, in my opinion, the amount of
material on linear algebra covered in, e.g., the classical text of Boyce and DiPrima [10], is in-
sufficient if that is all you will see in your academic career, I found it necessary to supplement
with notes on linear algebra of my own design. Eventually, it became clear that in order to
have a seamless transition between the linear algebra and ODEs, there needed to be one text.
This is not a new idea; for example, two recent texts which have a substantive linear algebra
component are by Boelkins et al. [7] and Edwards and Penney [16].

Because there is a substantive linear algebra component in this text, I - and more importantly,
the students - found it to be much easier later in the text when discussing the solutions of linear
systems of ODEs to focus more on the ODE aspects of the problems, and less on the underlying
algebraic manipulations. I have found that by doing the linear algebra first, it allowed me to
more extensively and deeply explore linear systems of ODEs. In particular, it is possible to do
much more interesting examples and applications. I believe that this inclusion of more modeling
and model analysis is extremely important; indeed, it is precisely what is recommended in
the 2013 report by the National Academy of Sciences on the current state, and future, of the
mathematical sciences.

The applications presented in this text are labeled “Case Studies”. I chose this moniker be-
cause I wanted to convey to the reader that in solving particular problems we were going to
do more than simply find a solution; instead, we were going to take time to determine what
the solution was telling us about the dynamical behaviour for the given physical system. There
are 18 case studies presented herein. Some are classical - e.g., damped mass-spring systems,
mixing problems (compartment models) - but several are not typically found in a text such as
this. Such examples include a discrete SIR model, a study of the effects on the body of lead
ingestion, strongly damped systems (which can be recast as a singular perturbation problem),
and a (simple) problem in the mathematics of climate. It is (probably) not possible to present
all of these case studies in a one-semester course. On the other hand, the large number allows
the instructor to choose a subset which will be of particular interest to his/her class.

The book is formatted as follows. In Chapter 1 we discuss not only the basics of linear algebra
that will be needed for solving systems of linear ordinary differential equations, e.g., Gaussian
elimination, matrix algebra, and eigenvalues/eigenvectors, but we discuss such foundational
material as subspaces, dimension, etc. While the latter material is not necessary to solve ODEs,

1



2 Introduction

I find that this is a natural time to introduce students to these more abstract linear algebra
concepts. Moreover, since linear algebra is such foundational material for a mathematical un-
derstanding of all of the sciences, I feel that it is essential that the students’ learn as much as
they reasonably can in the short amount of time that is available. It is typically the case that the
material in Chapter 1 can be covered in about 15-18 class periods. Primarily because of time
constraints, when presenting this material I focus primarily on the case of the vector space Rn.
The culminating section in the chapter is that on eigenvalues and eigenvectors. Here I espe-
cially emphasize the utility of writing a given vector as a linear combination of eigenvectors.
The closing section considers the large-time behavior associated with three discrete dynamical
systems. If the reader and/or instructor wishes to have a supplementary text for this chapter,
the book by Hefferon [23] is an excellent companion. Moreover , the PDF can be had for free at
http://joshua.smcvt.edu/linearalgebra/.

Once the linear algebra has been mastered, we begin the study of ODEs by first solving
scalar first-order linear ODEs in ??. We briefly discuss the general existence/uniqueness the-
ory, as well as the numerical solution. When solving ODEs numerically, we use the MATLAB
programs dfield8.m and pplane8.m developed by J. Polking. These MATLAB programs have
accompanying Java applets:

• DFIELD: http://math.rice.edu/∼dfield/dfpp.html
• PPLANE: http://math.rice.edu/∼dfield/dfpp.html.

My experience is that these software tools are more than sufficient to numerically solve the
problems discussed in this class. We next construct the homogeneous and particular solutions
to the linear problem. In this construction we do three things:

(a) derive and write the homogeneous solution formula in such a way that the later notion
of a homogeneous solution being thought of as the product of a matrix-valued solution
and a constant vector is a natural extension

(b) derive and write the variation-of-parameters solution formula in such a manner that the
ideas easily generalize to systems

(c) develop the technique of undetermined coefficients.

The chapter closes with a careful analysis of the one-tank mixing problem under the assump-
tion that the incoming concentration varies periodically in time, and a mathematical finance
problem . The idea here is to:

(a) show the students that understanding is not achieved with a solution formula; instead, it
is necessary that the formula be written “correctly” so that as much physical information
as possible can be gleaned from it

(b) introduce the students to the ideas of amplitude plots and phase plots
(c) set the students up for the later analysis of the periodically forced mass-spring.

As a final note, in many (if not almost all) texts there is typically in this chapter an extensive
discussion on nonlinear ODEs. I chose to provide only a cursory treatment of this topic at the
end of this book because of:

(a) my desire for my students to understand and focus on linearity and its consequences
(b) the fact that we at Calvin College teach a follow-up course on nonlinear dynamics using

the wonderful text by Strogatz [40].

In ?? we study systems of linear ODEs. We start with five physical examples, three of which
are mathematically equivalent in that they are modeled by a second-order scalar ODE. We show
that nth-order scalar ODEs are equivalent to first-order systems, and thus (hopefully) convince
the student that it is acceptable to skip (for the moment) a direct study of these higher-order

http://joshua.smcvt.edu/linearalgebra/
http://math.rice.edu/~dfield/dfpp.html
http://math.rice.edu/~dfield/dfpp.html


Introduction 3

scalar problems. We almost immediately go the case of the homogeneous problem being con-
stant coefficient, and derive the homogeneous solution via an expansion in terms of eigenvec-
tors. From a pedagogical perspective I find (and my students seem to agree) this to be a natural
way to see how the eigenvalues and eigenvectors of a matrix play a key role in the construc-
tion of the homogeneous solution, and in particular how using a particular basis may greatly
simplify a given problem. Moreover, I find that this approach serves as an indirect introduc-
tion to the notion of Fourier expansions, which is of course used extensively in a successor
course on linear partial differential equations. After we construct the homogeneous solutions
we discuss the associated phase plane. As for the particular solutions we mimic the discussion
of the previous chapter and simply show what few modifications must be made in order for
the previous results to be valid for systems. My experience has been that the manner in which
things were done in the previous chapter helps the student to see that it is not the case we are
learning something entirely new and different, but instead we are just expanding on an already
understood concept. The chapter closes with a careful analysis of three problems: a two-tank
mixing problem in which the incoming concentration into at one of the tanks is assumed to
vary periodically in time, a study of the effect of lead ingestion, and an SIR model associated
with zoonotic (animal-to-human) bacterial infections. As in the previous chapter the goal is to
not only construct the mathematical solution to the problem, but to also understand how the
solution helps us to understand the dynamics of the given physical system.

In ?? we solve higher-order scalar ODEs. Because all of the theoretical work has already been
done in the previous chapter, it is not necessary to spend too much time on this particular task.
In particular, there is a relatively short presentation as to how one can use the systems theory
to solve the scalar problem. The variation of parameters formula is not re-derived; instead, it is
just presented as a special case of the formula for systems. We conclude with a careful study of
several problems: the undamped and damped mass-spring systems, a (linear) pendulum driven
by a constant torque, a couple mass-spring system, and the vibrations of a beam. The last study
introduces the separation of variables technique for solving linear PDEs. Nice illustrative Java
applets for the mass-spring problems are:

• Forced and damped oscillations of a spring pendulum:
http://www.walter-fendt.de/ph14e/resonance.htm

• Coupled oscillators:
http://www.lon-capa.org/%7emmp/applist/coupled/osc2.htm.

There are also illustrative movies which are generated by MATLAB.
In ?? we solve scalar ODEs using the Laplace transform. The focus here is to solve only

those problems for which the forcing term is a linear combination of Heaviside functions and
delta functions. In my opinion any other type of forcing term can be more easily handled with
either the method of undetermined coefficients or variation of parameters. Moreover, we focus
on using the Laplace transform as a method to find the particular solution, with the understand-
ing that we can find the homogeneous solution using the ideas and techniques from previous
chapters. In order to simplify the calculations, we assume that when finding the particular so-
lution there is zero initial data. Because of the availability of WolframAlpha, we spend little
time on partial fraction expansions and the inversion of the Laplace transform. The subse-
quent case studies are somewhat novel. We start with finding a way to stop the oscillations
for an undamped mass-spring system. For our second problem, we study a one-tank mixing
problem in which in the incoming concentration varies periodically in time. The injection strat-
egy is modeled as an infinite sum of delta functions. Our last case study involves the analysis
of a strongly damped mass-spring problem. We show that this system can be thought of as
a singular perturbation problem which is (formally) mathematically equivalent to a one-tank
mixing problem. We finish the discussion of the Laplace transform with the engineering appli-

http://www.walter-fendt.de/ph14e/resonance.htm
http://www.lon-capa.org/%7emmp/applist/coupled/osc2.htm
http://www.wolframalpha.com/


4 Introduction

cations of the transfer function, the manner in which the poles of the transfer function effect
the dynamics of the homogeneous solution. We show that the convolution integral leads to a
variation-of-parameters formula for the particular solution.

In ?? we cover topics which are not infrequently discussed if time permits: separation of
variables, phase line analysis, and series solutions. Each topic is only briefly touched upon, but
enough material is presented herein for the student to get a good idea of what each one is about.
For the latter two topics I present case studies which could lead to a more detailed examination
of the topic (using outside resources) if the student and/or instructor wishes.

Almost every section concludes with a set of homework problems. Moreover, there is a
section at the end of each of Chapter 1, ??, ??, and ?? which is labeled Group Projects. The
problems contained in these sections are more challenging, and I find it to be the case that
the students have a better chance of understanding and solving them if they work together in
groups of 3-4 people. My experience is that the students truly enjoy working on these problems,
and they very much appreciate working collaboratively. I typically assign 1-2 of these types of
problems per semester.

As of the current edition relatively few of the homework problems have attached to them a
solution. My expectation is that many, if not most, students will find this lack of solved problems
troubling. Two relatively cheap (potentially supplemental) texts which address this issue are
Lipschutz and Lipson [29] for the linear algebra material and Bronson and Costa [11] for the
ODE material. Of course, other books, e.g., [6, 13, 20, 35], can be found simply by going to the
library and looking there through the (perhaps) dozens of appropriate books.

Throughout this text we expect the students to use a CAS to do some of the intermediate
calculations. Herein we focus upon WolframAlpha (http://www.wolframalpha.com/). There
are several advantages to using this particular CAS:

(a) it is not necessary to learn a programming language to use it
(b) the commands are intuitive
(c) it is easily accessible
(d) it is free (as of June, 2014).

I appreciate that the interested reader and/or instructor can do much more with Mathematica,
Maple, Sage, etc. However, there is currently no universal agreement as to which package is best
to use (even within my department!), and I do not want to limit this text to a particular system.
Moreover, my goal here is to focus more on using the software to solve a given problem, and
not on the programming necessary to use the particular CAS. My expectation is that interested
students who have some experience with a particular CAS will quickly learn how to do what
they want to do with it.

In this text we do not use this software to completely solve a given problem, as it is im-
portant that the student thoroughly understand what intermediate calculations are needed in
order to solve the problem. The idea here is that the CAS can be used to remove some of the
computational burden associated with solving a problem. A screenshot is provided in the text
for most of the calculations, so it should be easy for the student to replicate. In addition, there
is a brief section at the end of the text which shows how one can use MATLAB to perform
many of the intermediate calculations. The particular scripts are provided on my web page at
http://www.calvin.edu/∼ tmk5/courses/m231/S14/.

In the ODE portion of this text we attempt to emphasize the idea that the interesting thing is
not necessarily the mathematical solution of a given mathematical problem, but what it is that
the solution tells you about the physical problem being modeled. The (extremely) easy-to-use
CAS generally does a reasonable job of solving a given mathematical equation, but it is not quite
as helpful when interpreting a solution.

http://www.wolframalpha.com/
http://www.calvin.edu/~tmk5/courses/m231/S14/


Introduction 5

The electronic version of this book is embedded with hyperlinks (both internal and external),
and they are marked in blue text. It is my hope that these links make it easier to navigate the
book; in particular, it should be the case that it is easier (and quicker than a paper version!) for
the reader to reference previous results, e.g., to recall a result on page 69 while reading page 113.
The book does include a minimal index. It mostly provides the first page at which a particular
term is mentioned. In particular, it does provide the page for which each term is first defined.
Since it is expected that this book will be primarily used in an electronic format, this potential
drawback is easily overcome via a “find” command.

I am indebted to Kate Ardinger, Tom Jager, Jeff Humpherys, Michael Kapitula, Keith Promis-
low, Thomas Scofield, Matt Walhout, and anonymous reviewers for discussions about, and a
careful reading of, this manuscript. The implementation of their suggestions and comments
greatly improved the text.

For the glory of the most high God alone,
And for my neighbour to learn from.

 J.S. Bach 





Chapter 1
Essentials of Linear Algebra

ch:linalg

Mathematics is the art of reducing any problem to linear algebra.
- William Stein

To many, mathematics is a collection of theorems. For me, mathematics is a collection
of examples; a theorem is a statement about a collection of examples and the purpose
of proving theorems is to classify and explain the examples . . .
- John Conway

The average college student knows how to solve two equations in two unknowns in an
elementary way: the method of substitution. For example, consider the system of equations

2x+ y = 6, 2x+ 4y = 5.

Solving the first equation for y gives y = 6−2x, and substituting this expression into the second
equation yields

2x+ 4(6− 2x) = 5  x =
19

6
.

Substitution into either of the equations gives the value of y; namely, y = −1/3. For systems of
three or more equations this algorithm is algebraically unwieldy. Furthermore, it is inefficient,
as it is often the case not very clear as to which variable(s) should be substituted into which
equation(s). Thus, at the very least, we should develop an efficient algorithm for solving large
systems of equations. Perhaps more troubling (at least to the mathematician!) is the fact that
the method of substitution does not yield any insight into the structure of the solution set. An
analysis and understanding of this structure is the topic of linear algebra. As we will see, not
only will we gain a much better understanding of how to solve linear algebraic systems, but by
considering the problem more abstractly we will better understand how to solve linear systems
of ordinary differential equations (ODEs).

This chapter is organized in the following manner. We begin our discussion of linear sys-
tems of equations by developing an efficient solution algorithm: Gaussian elimination. We then
consider the problem using matrices and vectors, and spend considerable time and energy try-
ing to understand the solution structure via these objects. In particular, we show that that the
solution is composed of two pieces. One piece intrinsically associated with the matrix alone,
and the other piece reflects an interaction between the matrix and nonhomogeneous term. We
conclude the chapter by looking at special vectors associated with square matrices: the eigen-
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8 1 Essentials of Linear Algebra

vectors. These vectors have the special algebraic property that the matrix multiplied by an
eigenvector is simply a scalar multiple of that eigenvector (this scalar is known as the associ-
ated eigenvalue). As we will see, the eigenvalues and eigenvectors are the key objects associated
with a matrix that allow us to easily and explicitly write down and understand the solution to
a linear dynamical systems (both discrete and continuous).

1.1 Solving linear systems

1.1.1 Notation and terminology

A linear equation in n variables is an algebraic equation of the form

a1x1 + a2x2 + · · ·+ anxn = b. (1.1.1) e:121

The (possibly complex-valued) numbers a1, a2, . . . , an are the coefficients, and the unknowns
to be solved for are the variables x1, . . . , xn. The variables are also sometimes called un-
knowns. An example in two variables is

2x1 − 5x2 = 7,

and an example in three variables is

x1 − 3x2 + 9x3 = −2.

A system of linear equations is a collection of m linear equations (1.1.1), and can be written as

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

(1.1.2) e:122

The coefficient ajk is associated with the variable xk in the jth equation. An example of two
equations in three variables is

x1 − 4x2 = 6

3x1 + 2x2 − 5x3 = 2.
(1.1.3) e:123

Until we get to our discussion of eigenvalues and eigenvectors in Chapter 1.14, we will
assume that the coefficients and variables are real numbers, i.e., ajk, xj ∈ R. This is
done solely for the sake of pedagogy and exposition. It cannot be stressed too much,
however, that everything we do preceding Chapter 1.14 still works even if we remove
this restriction, and we allow these numbers to be complex (have nonzero imaginary
part).

When there is a large number of equations and/or variables, it is awkward to write down a
linear system in the form of (1.1.2). It is more convenient instead to use a matrix formulation.
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A matrix is a rectangular array of numbers with m rows and n columns, and such a matrix is
said to be an m× n (read “m by n”) matrix. If m = n, the matrix is said to be a square matrix.

For an m × n matrix with real entries we will say A ∈ Mm×n(R). If the matrix is
square, i.e., m = n, then we will write A ∈ Mn(R). The R is there to emphasize that
all of the entries are real numbers. If the entries are allowed to be complex, we will
write A ∈Mm×n(C), or A ∈Mn(C).

The coefficient matrix for the linear system (1.1.2) is given by

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
... · · ·

...
am1 am2 · · · amn

 , (1.1.4) e:124

and the coefficient ajk , which is associated with the variable xk in the jth equation, is in the
jth row and kth column. For example, the coefficient matrix for the system (1.1.3) is given by

A =

(
1 −4 0
3 2 −5

)
∈M2×3(R),

with
a11 = 1, a12 = −4, a13 = 0, a21 = 3, a22 = 2, a23 = −5.

A vector, say v ∈Mm×1(R), is a matrix with only one column. A vector is sometimes called a
column vector or m-vector. To clearly distinguish between vectors and matrices we will write

Rm :=Mm×1(R)  v ∈ Rm.

The variables in the system (1.1.2) will be written as the vector

x =


x1
x2
...
xn

 ,

and the variables on the right-hand side will be written as the vector

b =


b1
b2
...
bm

 .

The zero vector,
0 ∈ Rm, is the

vector with a zero in
each entry.

In conclusion, for the system (1.1.2) there are three matrix-valued quantities: the coefficient
matrix A, the vector of unknowns x , and the right-hand side vector b . We will represent the
linear system (1.1.2)

Ax = b. (1.1.5) e:125

We will later see what it means to multiply a matrix and a vector. The linear system is said to
be homogeneous if b = 0 ; otherwise, the system is said to be nonhomogeneous.
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1.1.2 Solutions of linear systems

A solution to the linear system (1.1.5) (or equivalently, (1.1.2)) is a vector x which satisfies all m
equations simultaneously. For example, consider the linear system of three equations in three
unknowns for which

A =

 1 0 −1
3 1 0
1 −1 −1

 , b =

 0
1
−4

 , (1.1.6) e:126

i.e.,
x1 − x3 = 0, 3x1 + x2 = 1, x1 − x2 − x3 = −4.

It is not difficult to check that a solution is given by

x =

−14
−1

  x1 = −1, x2 = 4, x3 = −1.

A system of linear equations with at least one solution is said to be consistent; otherwise, it is
inconsistent.

How many solutions does a linear system have? Consider the system given by

2x1 − x2 = −2, −x1 + 3x2 = 11.

The first equation represents a line in the x1x2-plane with slope 2, and the second equation
represents a line with slope 1/3. Since lines with different slopes intersect at a unique point,
there is a unique solution to this system, and it is consistent. It is not difficult to check that the
solution is given by (x1, x2) = (1, 4). Next consider the system given by

2x1 − x2 = −2, −4x1 + 2x2 = 8.

Each equation represents a line with slope 2, so that the lines are parallel. Consequently, the
lines are either identically the same, so that there are an infinite number of solutions, or they
intersect at no point, so that the system is inconsistent. Since the second equation is a multiple
of the first equation, the system is consistent. On the other hand, the system

2x1 − x2 = −2, −4x1 + 2x2 = 7

is inconsistent, as the second equation is no longer a scalar multiple of the first equation. See
Figure 1.1 for graphical representations of these three cases.

We see that a linear system with two equations and two unknowns is either consistent with
one or an infinite number of solutions, or is inconsistent. It is not difficult to show that this fact
holds for linear systems with three unknowns. Each linear equation in the system represents a
plane in x1x2x3-space. Given any two planes, we know that they are either parallel, or intersect
along a line. Thus, if the system has two equations, then it will either be consistent with an
infinite number of solutions, or inconsistent. Suppose that the system with two equations is
consistent, and add a third linear equation. Further suppose that the original two planes intersect
along a line. This new plane is either parallel to the line, or intersects it at precisely one point. If
the original two planes are the same, then the new plane is either parallel to both, or intersects
it along a line. In conclusion, for a system of equations with three variables there is either a
unique solution, an infinite number of solutions, or no solution.
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x1

x2

x1

x2

x1

x2

Inconsistent1 solution solutions8

Fig. 1.1 (color online) A graphical depiction of the three possibilities for linear systems of two equations
in two unknowns. The left panel shows the case when the corresponding lines are not parallel, and
the other two panels show the cases when the lines are parallel. f:ConsistentSolutions

For systems with four or more variables this geometric argument is difficult to visualize.
However, using the row reduced echelon form of a matrix (see Definition 1.1.4), one can show
algebraically:

thm:121 Theorem 1.1.1. If the linear system (1.1.2) is consistent, then there is either a unique
solution, or an infinite number of solutions.

B Remark 1.1.2. Theorem 1.1.1 does not hold for nonlinear systems. For example, the nonlin-
ear system

x21 + x22 = 2, x1 + x2 = 0

is consistent, and has the two solutions (−1, 1), (1,−1).
It is often the case that if a linear system is consistent, then more cannot be said about the

number of solutions without directly solving the system. However, in the argument leading up
to Theorem 1.1.1 we did see that for a system of two equations in three unknowns that if the
system was consistent, then there were necessarily an infinite number of solutions. This result
holds in general:

cor:121 Corollary 1.1.3. Suppose that the linear system is such thatm < n, i.e., there are fewer
equations than unknowns (the system is underdetermined). If the system is consistent,
then there are an infinite number of solutions.

1.1.3 Solving by Gaussian elimination

We now need to understand how to systematically solve the linear system (1.1.5),

Ax = b.
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While the method of substitution works fine for two equations in two unknowns, it quickly
breaks down as a practical method when there are three or more variables involved in the
system. We need to come up with something else.

The simplest linear system to solve for two equations in two unknowns is

x1 = b1, x2 = b2.

The coefficient matrix is
I 2 =

(
1 0
0 1

)
∈M2(R),

which is known as the identity matrix. The unique solution to this system is x = b . The
simplest linear system to solve for three equations in three unknowns is

x1 = b1, x2 = b2, x3 = b3.

The coefficient matrix is now

I 3 =

 1 0 0
0 1 0
0 0 1

 ∈M3(R),

which is the 3 × 3 identity matrix. The unique solution to again system is x = b . Continuing
in this fashion, the simplest linear system for n equations in n unknowns to solve is

x1 = b1, x2 = b2, x3 = b3, . . . , xn = bn.

The coefficient matrix associated with this system is I n, and the solution is x = b . The identity matrix,
I n, is a square
matrix with ones on
the diagonal, and
zeros everywhere
else. The subscript
refers to the size of
the matrix.

Suppose that the number of equations is not equal to the number of unknowns. For example,
a particularly simple system to solve is given by

x1 − 3x3 + 4x4 = 2, x2 + x3 − 6x4 = 5. (1.1.7) e:127

The coefficient matrix for this system is

A =

(
1 0 −3 4
0 1 1 −6

)
∈M2×4(R).

Solving the system for the first two variables in terms of the latter two yields

x1 = 3x3 − 4x4 + 2, x2 = −x3 + 6x4 + 5.

Upon setting x3 = s and x4 = t, where the dummy variables s, t ∈ R are arbitrary, we see the
solution to this system is

x1 = 2 + 3s− t, x2 = 5− s+ 6t, x3 = s, x4 = t  x =


2 + 3s− 4t
5− s+ 6t

s
t

 , s, t ∈ R.

Since s and t are arbitrary, there are an infinite number of solutions. This was expected, for as
we saw in Corollary 1.1.3 consistent underdetermined systems will have an infinite number of
solutions.

The coefficient matrices for the problems considered so far share a common feature, which
is detailed below:
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RREF
def:121 Definition 1.1.4. A matrix is said to be in row reduced echelon form (RREF) if

(a) all nonzero rows are above any zero row
(b) the first nonzero entry in a row (the leading entry) is a one
(c) every other entry in a column with a leading one is zero.

Those columns with a leading entry are known as pivot columns, and the leading entries
are called pivot positions.

The RREF of a given
matrix is unique [42].

C Example 1.1.5. Consider the matrix in RREF given by

A =


1 0 −3 0 7
0 1 −3 0 2
0 0 0 1 −4
0 0 0 0 0

 ∈M4×5(R)

The first, second, and fourth columns are the pivot columns, and the pivot positions are the first
entry in the first row, the second entry in the second row, and the fourth entry in the third row.As a rule-of-thumb,

when putting an
augmented matrix

into RREF, the idea is
to place 1’s on the
diagonal, and 0’s

everywhere else (as
much as possible).

If a coefficient matrix is in RREF, then the linear system is particulary easy to solve. Thus,
our goal is to take a given linear system with its attendant coefficient matrix, and then perform
allowable algebraic operations so that the new system has a coefficient matrix which is in RREF.
The allowable algebraic operations for solving a linear system are:

(a) multiply any equation by a constant
(b) add/subtract equations
(c) switch the ordering of equations.

Upon doing these operations the resulting system is not the same as the original; however, the
new system is equivalent to the old in that for consistent systems the solution values remain
unchanged. If the original system is inconsistent, then so will any new system resulting from
performing the above operations.

In order to do these operations most efficiently using matrices, it is best to work with the
augmented matrix associated with the linear system Ax = b ; namely, the matrix (A|b). The
augmented matrix is formed by adding a column, namely the vector b , to the coefficient matrix.
For example, for the linear system associated with (1.1.6) the augmented matrix is given by

(A|b) =

 1 0 −1 0
3 1 0 1
1 −1 −1 −4

 , (1.1.8) e:128

and the augmented matrix for the linear system (1.1.7) is

(A|b) =
(
1 0 −3 4 2
0 1 1 −6 5

)
The allowable operations on the individual equations in the linear system correspond to oper-
ations on the rows of the augmented matrix. In particular, when doing Gaussian elimination
on an augmented matrix in order to put it into RREF, we are allowed to:

(a) multiply any row by a constant
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(b) add/subtract rows
(c) switch the ordering of the rows.

Once we have performed Gaussian elimination on an augmented matrix in order to put it into
RREF, we can easily solve the resultant system.
C Example 1.1.6. Consider the linear system associated with the augmented matrix in (1.1.8).
We will henceforth let ρj denote the jth row of a matrix. The operation “aρj + bρk” will be
taken to mean multiply the jth row by a, multiply the kth row by b, add the two resultant
rows together, and replace the kth row with this sum. With this notation in mind, performing
Gaussian elimination yields

(A|b) −3ρ1+ρ2−→

1 0 −1 0
0 1 3 1
1 −1 −1 −4

 −ρ1+ρ3−→

 1 0 −1 0
0 1 3 1
0 −1 0 −4

 ρ2+ρ3−→

 1 0 −1 0
0 1 3 1
0 0 3 −3


(1/3)ρ3−→

 1 0 −1 0
0 1 3 1
0 0 1 −1

 −3ρ3+ρ2−→

 1 0 −1 0
0 1 0 4
0 0 1 −1

 ρ3+ρ1−→

 1 0 0 −1
0 1 0 4
0 0 1 −1

 .

The new linear system is

x1 = −1, x2 = 4, x3 = −1  x =

−14
−1

 ,

which is also immediately seen to be the solution.
C Example 1.1.7. Consider the linear system

x1 − 2x2 − x3 = 0

3x1 + x2 + 4x3 = 7

2x1 + 3x2 + 5x3 = 7.

Performing Gaussian elimination on the augmented matrix yields 1 −2 −1 0
3 1 4 7
2 3 5 7

 −3ρ1+ρ2−→

1 −2 −1 0
0 7 7 7
2 3 5 7

 −2ρ1+ρ3−→

 1 −2 −1 0
0 7 7 7
0 7 7 7

 −ρ2+ρ3−→

 1 −2 −1 0
0 7 7 7
0 0 0 0


(1/7)ρ2−→

1 −2 −1 0
0 1 1 1
0 0 0 0

 2ρ2+ρ1−→

 1 0 1 2
0 1 1 1
0 0 0 0

 .

The new linear system to be solved is given by

x1 + x3 = 2, x2 + x3 = 1, 0x1 + 0x2 + 0x3 = 0.

Ignoring the last equation, this is a system of two equations with three unknowns; consequently,
since the system is consistent it must be the case that there are an infinite number of solutions.
The variables x1 and x2 are associated with leading entries in the RREF form of the augmented
matrix. As for the variable x3, which is associated with the third column, which in turn is not
a pivot column, we say:
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Free variable
def:121a Definition 1.1.8. A free variable of a linear system is a variable which is associated

with a column in the RREF matrix which is not a pivot column.

Since x3 is a free variable, it can be arbitrarily chosen. Upon setting x3 = t, where t ∈ R,
the other variables are

x1 = 2− t, x2 = 1− t.

The solution is then

x =

 2− t
1− t
t

 , t ∈ R.

C Example 1.1.9. Consider a linear system which is a variant of the one given above; namely,

x1 − 2x2 − x3 = 0

3x1 + x2 + 4x3 = 7

2x1 + 3x2 + 5x3 = 8.

Upon doing Gaussian elimination of the augmented matrix we see that 1 −2 −1 0
3 1 4 7
2 3 5 8

 RREF−→

 1 0 1 2
0 1 1 1
0 0 0 1

 .

The new linear system to be solved is

x1 + x3 = 2, x2 + x3 = 1, 0x1 + 0x2 + 0x3 = 1.

Since the last equation clearly does not have a solution, the system is inconsistent.
C Example 1.1.10. Consider a linear system for which the coefficient matrix and nonhomoge-
neous term are

A =

 1 2 3
4 5 6
7 8 2

 , b =

−14
−7

 .

We will use WolframAlpha to put the augmented matrix into RREF. It is straightforward to
enter a matrix in this CAS. The full matrix is surrounded by curly brackets. Each individual
row is also surrounded by curly brackets, and the individual entries in a row are separated by
commas. Each row is also separated by a comma. We have:

http://www.wolframalpha.com/


16 1 Essentials of Linear Algebra

row reduce 881,2,3,-1<,84,5,6,4<,87,8,2,-7<<

Input:

row reduce

1 2 3 -1

4 5 6 4

7 8 2 -7

Result: Step-by-step solution

1 0 0
139

21

0 1 0 -
152

21

0 0 1
16

7

Dimensions:

3 HrowsL ´ 4 HcolumnsL

Matrix plot:

1 2 3 4

1

2

3

1 2 3 4

1

2

3

Pseudoinverse: Exact form

0.57226 0.467744 -0.147709

0.467744 0.48851 0.161523

-0.147709 0.161523 0.948993

0.0646225 -0.0706664 0.0223157

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

The solution is the last column,

x =
1

21

 139
−152

48

 ∼
 6.62
−7.24
2.29

 .

Exercises

Exercise 1.1.1. Solve each system of equations, or explain why no solution exists.

(a) x1 + 2x2 = 4, −2x1 + 3x2 = −1
(b) x1 + 2x2 = 4, x1 + 2x2 = −1
(c) x1 + 2x2 = 4, 4x1 + 8x2 = 15

Exercise 1.1.2. Each of the below linear systems is represented by an augmented matrix in
RREF. If the system is consistent, express the solution in vector form.

(a)

 1 0 0 −3
0 1 1 2
0 0 0 5


(b)

 1 0 0 −4
0 1 2 7
0 0 0 0


(c)

 1 0 0 3
0 1 0 4
0 0 0 −2


(d)

 1 0 0 3 −1
0 1 1 4 3
0 0 0 0 0





1.1 Solving linear systems 17

Exercise 1.1.3. Determine all value(s) of r which make each augmented matrix correspond to
a consistent linear system. For each such r, express the solution to the corresponding linear
system in vector form.

(a)
(

1 4 −3
−2 −8 r

)
(b)
(
1 4 −3
2 r −6

)
(c)
(

1 4 −3
−3 r −9

)
(d)
(

1 r −3
−3 r 8

)
Exercise 1.1.4. The augmented matrix for a linear system is given by1 1 3 2

1 2 4 3
1 3 a b

 .

(a) For what value(s) of a and b will the system have infinitely many solutions?
(b) For what value(s) of a and b will the system be inconsistent?

Exercise 1.1.5. Solve each linear system, and express the solution in vector form.

(a) 3x1 + 2x2 = 16, −2x1 + 3x2 = 11
(b) 3x1 + 2x2 − x3 = −2, −3x1 − x2 + x3 = 5, 3x1 + 2x2 + x3 = 2
(c) 2x1 + x2 = −1, x1 − x3 = −2, −x1 + 3x2 + 7x3 = 11
(d) x1 + x2 − x3 = 0, 2x1 − 3x2 + 5x3 = 0, 4x1 − x2 + 3x3 = 0
(e) x2 + x3 − x4 = 0, x1 + x2 + x3 + x4 = 6

2x1 + 4x2 + x3 − 2x4 = −1, 3x1 + x2 − 2x3 + 2x4 = 3

Exercise 1.1.6. If the coefficient matrix satisfies A ∈ M9×6(R), and if the RREF of the aug-
mented matrix (A|b) has three zero rows, is the solution unique? Why, or why not?
Exercise 1.1.7. If the coefficient matrix satisfies A ∈M5×7(R), and if the linear system Ax =
b is consistent, is the solution unique? Why, or why not?
Exercise 1.1.8. Determine if each of the following statements is true or false. Provide an expla-
nation for your answer.

(a) A system of four linear equations in three unknowns can have exactly five solutions.
(b) If a system has a free variable, then there will be an infinite number of solutions.
(c) If a system is consistent, then there is a free variable.
(d) If the RREF of the augmented matrix has four zero rows, and if the system is consistent,

then there will be an infinite number of solutions.
(e) If the RREF of the augmented matrix has no zero rows, then the system is consistent.

Exercise 1.1.9. Find a quadratic polynomial p(t) = a0 + a1t+ a2t
2 which passes through the

points (−2, 12), (1, 6), (2, 18). Hint: p(1) = 6 implies that a0 + a1 + a2 = 6.
Exercise 1.1.10. Find a cubic polynomial p(t) = a0 + a1t+ a2t

2 + a3t
3 which passes through

the points (−1,−3), (0, 1), (1, 3), (2, 17).
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1.2 Vector algebra and matrix/vector multiplication

Now that we have an efficient algorithm to solve the linear system Ax = b , we need to next
understand what it means from a geometric perspective to solve the system. For example, if the
system is consistent, how does the vector b relate to the coefficients of the coefficient matrix A?
In order to answer this question, we need to make sense of the expression Ax (matrix/vector
multiplication).

1.2.1 Linear combinations of vectors

We begin by considering the addition/subtraction of vectors, and the product of a scalar with a
vector. We will define the addition/subtraction of two n-vectors to be exactly what is expected,
and the same will hold true for the multiplication of a vector by a scalar; namely,

x ± y =


x1 ± y1
x2 ± y2

...
xn ± yn

 , cx =


cx1
cx2

...
cxn

 .

Vector addition and subtraction are done component-by-component, and scalar multiplication
of a vector means that each component of the vector is multiplied by the scalar. For example,(

−2
5

)
+

(
3
−1

)
=

(
1
4

)
, 3

(
2
−3

)
=

(
6
−9

)
.

These are linear operations. Combining these two operations, we have more generally:

Linear combination
def:131 Definition 1.2.1. A linear combination of the n-vectors a1, . . . ,ak is given by the vec-

tor b , where

b = x1a1 + x2a2 + · · ·+ xkak =

k∑
j=1

xjaj .

The scalars x1, . . . , xk are known as weights.

With this notion of linear combinations of vectors, we can rewrite linear systems of equations
in vector notation. For example, consider the linear system

x1 − x2 + x3 = −1
3x1 + 2x2 + 8x3 = 7

x1 + 2x2 + 4x3 = 5.

(1.2.1) e:131

Since two vectors are equal if and only if all of their coefficients are equal, we can write (1.2.1)
in vector form as  x1 − x2 + x3

3x1 + 2x2 + 8x3
x1 + 2x2 + 4x3

 =

−17
5

 .
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Using linearity we can write the vector on the left-hand side as x1 − x2 + x3
3x1 + 2x2 + 8x3
x1 + 2x2 + 4x3

 = x1

1
3
1

+ x2

−12
2

+ x3

 1
8
4

 ,

so the system (1.2.1) is equivalent to

x1

 1
3
1

+ x2

−12
2

+ x3

 1
8
4

 =

−17
5

 .

After setting

a1 =

 1
3
1

 , a2 =

−12
2

 , a3 =

1
8
4

 , b =

−17
5

 ,

the linear system can then be rewritten as the linear combination of vectors

x1a1 + x2a2 + x3a3 = b. (1.2.2) e:132

In conclusion, asking for solutions to the linear system (1.2.1) can instead be thought of as
asking if the vector b is a linear combination of the vectors a1,a2,a3. It can be checked that
after Gaussian elimination  1 −1 1 −1

3 2 8 7
1 2 4 5

 RREF−→

 1 0 2 1
0 1 1 2
0 0 0 0

 .

The free variable is x3, so the solution to the linear system (1.2.1) can be written

x1 = 1− 2t, x2 = 2− t, x3 = t; t ∈ R. (1.2.3) e:132a

In vector form this form of the solution is

x =

1− 2t
2− t
t

 =

 1
2
0

+ t

−2−1
1

 , t ∈ R.

The vector b is a linear combination of the vectors a1,a2,a3, and the weights are given in
(1.2.3),

b = (1− 2t)a1 + (2− t)a2 + ta3, t ∈ R.

1.2.2 Matrix/vector multiplication

With this observation in mind, we now define the multiplication of a matrix and a vector so
that the resultant corresponds to a linear system. For the linear system of (1.2.1) let A be the
coefficient matrix,

A = (a1 a2 a3) ∈M3(R).



20 1 Essentials of Linear Algebra

Here each column of A is thought of as a vector. If for

x =

x1
x2
x3


we define

Ax := x1a1 + x2a2 + x3a3,

then by using (1.2.2) we have that the linear system is given by

Ax = b (1.2.4) e:133

(compare with (1.1.5)). In other words, by writing the linear system in the form of (1.2.4) we
really mean the linear combinations of (1.2.2), which in turn is equivalent to the original system
(1.2.1).

Matrix/vector multiplication

def:132 Definition 1.2.2. Suppose that A = (a1 a2 · · · an), where each vector aj ∈ Rm is
an m-vector. For x ∈ Rn we define matrix/vector multiplication as

Ax = x1a1 + x2a2 + · · ·+ xnan =

n∑
j=1

xjaj .

Note that A ∈Mm×n(R) and x ∈ Rn, so by definition

A︸︷︷︸
Rm×n

x︸︷︷︸
Rn×1

= b︸︷︷︸
Rm×1

.

In order for a matrix/vector multiplication to make sense, the number of columns in the matrix
A must the be same as the number of entries in the vector x . The product will be a vector in
which the number of entries is equal to the number of rows in A.
C Example 1.2.3. We have(

1 2
3 4

)(
−3
5

)
= −3

(
1
3

)
+ 5

(
2
4

)
=

(
7
11

)
,

and (
1 2 5
3 4 6

) 2
−1
3

 = 2

(
1
3

)
−
(
2
4

)
+ 3

(
5
6

)
=

(
15
20

)
.

Note that in the first example a 2 × 2 matrix multiplied a 2 × 1 matrix in order to get a 2 × 1
matrix, whereas in the second example a 2× 3 matrix multiplied a 3× 1 matrix in order to get
a 2× 1 matrix.

The multiplication of a matrix and a vector is a linear operation, as it satisfies the property
that the product of a matrix with a linear combination of vectors is the same thing as first taking
the individual matrix/vector products, and then taking the appropriate linear combination of
the resultant two vectors:
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lem:131 Lemma 1.2.4. If A ∈Mm×n(R) with x ,y ∈ Rn, then

A(cx + dy) = cAx + dAy .

Proof. Writing A = (a1 a2 · · · an), and using the fact that

cx + dy =


cx1 + dy1
cx2 + dy2

...
cxn + dyn

 ,

we have

A(cx + dy) = (cx1 + dy1)a1 + (cx2 + dy2)a2 + · · ·+ (cxn + dyn)an

= [cx1a1 + cx2a2 + · · ·+ cxnan] + [dy1a1 + dy2a2 + · · · dynan]
= c [x1a1 + x2a2 + · · ·+ xnan] + d [y1a1 + y2a2 + · · ·+ ynan]

= cAx + dAy . ut

B Remark 1.2.5. We are already familiar with linear operators, which are simply operators
which satisfy the linearity property of Lemma 1.2.4, in other contexts. For example, if D repre-
sents differentiation, i.e., D[f(t)] = f ′(t), then we know from Calculus I that

D[af(t) + bg(t)] = af ′(t) + bg′(t) = aD[f(t)] + bD[g(t)].

Similarly, if I represents anti-differentiation, i.e., I[f(t)] =
∫
f(t) dt, then we again know from

Calculus I that

I[af(t) + bg(t)] = a

∫
f(t) dt+ b

∫
g(t) dt = aI[f(t)] + bI[g(t)].

While we will not explore this issue too deeply in this text (although the idea will be used in ??
when discussing the solution structure for linear systems of ODEs), the implication of this fact
is that much of what we study about the actions of matrices on the set of vectors also applies
to operations such as differentiation and integration on the set of functions.
B Remark 1.2.6. For a simple example of a nonlinear operator, i.e., an operator which is not
linear, consider F(x) = x2. We have

F(ax+ by) = (ax+ by)2 = a2x2 + 2abxy + b2y2,

while
aF(x) + bF(y) = ax2 + by2.

These two quantities are clearly equal for all x and y if and only if a = b = 0; consequently,
the operator F cannot be a linear operator.

Exercises

Exercise 1.2.1. For each of the below problems compute the product Ax when it is well-
defined. If the product cannot be computed, explain why.
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(a) A =

(
1 −3
−3 2

)
, x =

(
−4
2

)
(b) A =

(
1 −2 5
2 0 −3

)
, x =

 2
−1
7


(c) A =

 1 −2
5 2
0 −3

 , x =

 2
−1
7


(d) A =

(
2 −1 −3

)
, x =

 1
6
−4

.

Exercise 1.2.2. Let

a1 =

−12
1

 , a2 =

 3
1
1

 , a3 =

 1
5
3

 , b =

−31
5

 .

Is b a linear combination of a1,a2,a3? If so, are the weights unique?
Exercise 1.2.3. Let

A =

(
2 5
−3 −1

)
, b =

(
5
6

)
.

Is the linear system Ax = b consistent? If so, what particular linear combination(s) of the
columns of A give the vector b?
Exercise 1.2.4. Find all of the solutions to the homogeneous problem Ax = 0 when:

(a) A =

(
1 −3 6
2 0 7

)
(b) A =

 1 −3 −4
−2 4 −12
0 2 −4


(c) A =

 2 3 6
−3 5 −1
1 −1 1


Exercise 1.2.5. Let

A =

(
2 −1
−6 3

)
, b =

(
b1
b2

)
.

Describe the set of all vectors b for which Ax = b is consistent.
Exercise 1.2.6. Determine if each of the following statements is true or false. Provide an expla-
nation for your answer.

(a) The homogeneous system Ax = 0 is consistent.
(b) If b is a linear combination of a1,a2, then there exist unique scalars x1, x2 such that

b = x1a1 + x2a2.
(c) If Ax = b is consistent, then b is a linear combination of the rows of A.
(d) A linear combination of five vectors in R3 produces a vector in R5.
(e) In order to compute Ax , the vector x must have the same number of entries as the

number of rows in A.
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1.3 Matrix algebra: addition, subtraction, and multiplication
s:18

Now that we have defined vector algebra and matrix/vector multiplication, we briefly consider
the algebra of matrices; in particular, addition, subtraction, and multiplication. Division will be
discussed later in Chapter 1.11. Just like for vectors, the addition and subtraction are straight-
forward, as is scalar multiplication. If we denote two matrices as A = (ajk) ∈Mm×n(R) and
B = (bjk) ∈Mm×n(R), then it is the case that

A±B = (ajk ± bjk), cA = (cajk).

In other words, we add/subtract two matrices of the same size component-by-component, and
if we multiply a matrix by a scalar, then we multiply each component by that scalar. This is
exactly what we do in the addition/subtraction of vectors, and the multiplication of a vector by
a scalar. For example, if

A =

(
1 2
−1 −3

)
, B =

(
2 1
4 3

)
,

then
A+B =

(
3 3
3 0

)
, 3A =

(
3 6
−3 −9

)
.

Regarding the multiplication of two matrices, we simply generalize the matrix/vector multi-
plication. For a given A ∈Mm×n(R), recall that for b ∈ Rn,

Ab = b1a1 + b2a2 + · · ·+ bnan, A = (a1 a2 · · · an).

If B = (b1 b2 · · · b`) ∈ Mn×`(R) (note that each column bj ∈ Rn), we then define the
multiplication of A and B by

A︸︷︷︸
Mm×n(R)

B︸︷︷︸
Mn×`(R)

= (Ab1 Ab2 · · · Ab`)︸ ︷︷ ︸
Mm×`(R)

.

The number of columns of A must match the number of rows of B in order for the operation
to make sense. Furthermore, the number of rows of the product is the number of rows of A,
and the number of columns of the product is the number of columns of B . For example, if

A =

(
1 2 3
−1 −3 2

)
, B =

 2 1
4 3
6 4

 ,

then

AB =

A

 2
4
6

 A

 1
3
4

 =

(
28 19
−2 −2

)
∈M2(R),

and

BA =

(
B

(
1
−1

)
B

(
2
−3

)
B

(
3
2

))
=

 1 1 8
1 −1 18
2 0 26

 ∈M3(R).

As the above example illustrates, it may not necessarily be the case that AB = BA. In this
example changing the order of multiplication leads to a resultant matrices of different sizes.
However, even if the resultant matrices are the same size, they need not be the same. Suppose
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that
A =

(
1 2
−1 −3

)
, B =

(
2 1
4 3

)
.

We have
AB =

(
A

(
2
4

)
A

(
1
3

))
=

(
10 7
−14 −10

)
∈M2(R),

and
BA =

(
B

(
1
−1

)
B

(
2
−3

))
=

(
1 1
1 −1

)
∈M2(R).

These are clearly not the same matrix. Thus, in general we cannot expect matrix multiplication
to be commutative.

On the other hand, even though matrix multiplication is not necessarily commutative, it is
associative, i.e.,

A(B +C ) = AB +AC .

This fact follows from the fact that matrix/vector multiplication is a linear operation (recall
Lemma 1.2.4), and the definition of matrix/matrix multiplication through matrix/vector multi-
plication. In particular, if we write

B = (b1 b2 · · · b`), C = (c1 c2 · · · c`),

then upon writing
B +C = (b1 + c1 b2 + c2 · · · b` + c`)

we have

A(B +C ) = A(b1 + c1 b2 + c2 · · · b` + c`)

= (A(b1 + c1) A(b2 + c2) · · · A(b` + c`))

= (Ab1 +Ac1 Ab2 +Ac2 · · · Ab` +Ac`)

= (Ab1 Ab2 · · · Ab`) + (Ac1 Ac2 · · · Ac`)

= AB +AC .

Indeed, while we will not discuss the details here, it is a fact that just like matrix/vector multi-
plication, matrix/matrix multiplication is a linear operation,

A(bB + cC ) = bAB + cAC .

There is a special matrix which plays the role of the scalar 1 in matrix multiplication: the
identity matrix I n. If A ∈Mm×n(R), then it is straightforward to check that

AI n = A, ImA = A.

In particular, if x ∈ Rn, then it is true that I nx = x . For an explicit example of this fact, if
n = 3, 1 0 0

0 1 0
0 0 1

x1
x2
x3

 = x1

 1
0
0

+ x2

0
1
0

+ x3

0
0
1

 =

x1
x2
x3

 .

Exercises
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Exercise 1.3.1. Let

A =

(
1 −2 −5
−2 3 −7

)
, B =

 2 0
−2 3
1 5

 , C =

 1 2
5 −4
3 −1

 .

Compute the prescribed algebraic operation if it is well-defined. If it cannot be done, explain
why.

(a) 3B − 2C
(b) 4A+ 2B
(c) AB
(d) CA

Exercise 1.3.2. Suppose that A ∈Mm×n(R) and B ∈Mn×k(R) with m 6= n and n 6= k (i.e.,
neither matrix is square).

(a) What is the size of AB?
(b) Can m, k be chosen so that BA is well-defined? If so, what is the size of BA?
(c) Is is possible for AB = BA? Explain.

1.4 Sets of linear combinations of vectors
s:13

Consider the linear system,

Ax = b, A = (a1 a2 · · · ak) ,

which by the definition of matrix/vector multiplication can be written,

x1a1 + x2a2 + · · ·+ xkak = b.

The linear system is consistent if and only if the vector b is some linear combination of the
vectors a1,a2, . . . ,ak . We now study the set of all linear combinations of these vectors. Once
this set has been properly described, we will consider the problem of determining which (and
how many) of the original set of vectors are needed in order to adequately describe it.

1.4.1 Span of a set of vectors

A particular linear combination of the vectors a1,a2, . . . ,ak is given by x1a1 + · · · + xkak .
The collection of all possible linear combinations of these vectors is known as the span of the
vectors.
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Span

def:141 Definition 1.4.1. Let S = {a1,a2, . . . ,ak} be a set of n-vectors. The span of S,

Span(S) = Span {a1,a2, . . . ,ak} ,

is the collection of all linear combinations. In other words, b ∈ Span(S) if and only if
for some x ∈ Rk ,

b = x1a1 + x2a2 + · · ·+ xkak.

The span of a collection of vectors has geometric meaning. First suppose that a1 ∈ R3. Recall
that lines in R3 are defined parametrically by

r(t) = r0 + tv ,

where v is a vector parallel to the line and r0 corresponds to a point on the line. Since

Span {a1} = {ta1 : t ∈ R} ,

this set is the line through the origin which is parallel to a1.
Now suppose that a1,a2 ∈ R3 are not parallel, i.e., a2 6= ca1 for some c ∈ R. Set v =

a1 × a2, i.e., v is a 3-vector which is perpendicular to both a1 and a2. The linearity of the dot
product, and the fact that v · a1 = v · a2 = 0, yields

v · (x1a1 + x2a2) = x1v · a1 + x2v · a2 = 0.

Thus,
Span {a1,a2} = {x1a1 + x2a2 : x1, x2 ∈ R}

is the collection of all vectors which are perpendicular to v . In other words, Span {a1,a2} is the
plane through the origin which is perpendicular to v . There are higher dimensional analogues,
but unfortunately they are difficult to visualize.

Now let us consider the computation that must be done in order to determine if b ∈ Span(S).
By definition b ∈ Span(S), i.e., b is a linear combination of the vectors a1, . . . ,ak , if and only
if there exist constants x1, x2, . . . , xk such that

x1a1 + x2a2 + · · ·+ xkak = b.

Upon setting

A = (a1 a2 · · · ak), x =


x1
x2
...
xk

 ,

by using the Definition 1.2.2 of matrix/vector multiplication we have that this condition is equiv-
alent to solving the linear system Ax = b . This yields:

rem:141 Lemma 1.4.2. Suppose that S = {a1,a2, . . . ,ak}, and set A = (a1 a2 · · · ak). The
vector b ∈ Span(S) if and only if the linear system Ax = b is consistent.

C Example 1.4.3. Letting
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a1 =

(
1
2

)
, a2 =

(
1
1

)
, b =

(
−1
2

)
,

let us determine if b ∈ Span {a1,a2}. As we have seen in Lemma 1.4.2, this question is equiva-
lent to determining if the linear system Ax = b is consistent. Since after Gaussian elimination

(A|b) RREF−→
(
1 0 3
0 1 −4

)
,

the linear system Ax = b is equivalent to

x1 = 3, x2 = −4,

which is easily solved. Thus, not only is b ∈ Span {a1,a2}, but it is the case that b = 3a1−4a2.
C Example 1.4.4. Letting

a1 =

 1
2
−4

 , a2 =

 3
−1
5

 , b =

 7
−7
r

 ,

let us determine those value(s) of r for which b ∈ Span {a1,a2}. As we have seen in
Lemma 1.4.2, this question is equivalent to determining if the linear system Ax = b is consis-
tent. Since after Gaussian elimination

(A|b) RREF−→

 1 0 −2
0 1 3
0 0 r − 23

 ,

the linear system is consistent if and only if r = 23. In this case x1 = −2, x2 = 3, so that
b ∈ Span {a1,a2} with b = −2a1 + 3a2.

Spanning set

def:spanset Definition 1.4.5. Let S = {a1,a2, . . . ,ak}, where each vector aj ∈ Rn. We say that
S is a spanning set for Rn if each b ∈ Rn is realized as a linear combination of the
vectors in S,

b = x1a1 + x2a2 + · · ·+ xkak.

In other words, S is a spanning set if the linear system,

Ax = b, A = (a1 a2 · · · ak) ,

is consistent for any b .

C Example 1.4.6. For

a1 =

1
2
1

 , a2 =

 3
−4
2

 , a3 =

 4
−2
3

 , a4 =

 4
7
−5

 ,

let us determine if S = {a1,a2,a3,a4} is a spanning set for R3. Using Lemma 1.5.2 we need
to know if Ax = b is consistent for any b ∈ R3, where A = (a1 a2 a3 a4). In order for this
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to be the case, the RREF of the augmented matrix (A|b) must always correspond to a consistent
system; in particular, the coefficient side of the RREF of the augmented matrix must have no
zero rows. Thus, in order to answer the question it is sufficient to consider the RREF of A. Since

A
RREF−→

1 0 1 0
0 1 1 0
0 0 0 1

 ,

which has no zero rows, the linear system will always be consistent. The set S is a spanning
set for R3.

1.4.2 Linear independence of a set of vectors

We now consider the question of how many of the vectors a1,a2, . . . ,ak are needed to com-
pletely describe Span ({a1,a2, . . . ,ak}). For example, let S = {a1,a2,a3}, where

a1 =

 1
−1
0

 , a2 =

 1
0
1

 , a3 =

 5
−2
3

 .

and consider Span(S). If b ∈ Span(S), then upon using Definition 1.4.1 we know there exist
constants x1, x2, x3 such that

b = x1a1 + x2a2 + x3a3.

Now, it can be checked that

a3 = 2a1 + 3a2  a1 + 3a2 − a3 = 0 , (1.4.1) e:132aa

so the vector a3 is a linear combination of a1 and a2. The original linear combination can be
then rewritten as

b = x1a1 + x2a2 + x3(2a1 + 3a2) = (x1 + 2x3)a1 + (x2 + 3x3)a2.

In other words, the vector b is a linear combination of a1 and a2 alone. Thus, the addition of
a3 in the definition of Span(S) is superfluous, so we can write

Span(S) = Span {a1,a2} .

Since a2 6= ca1 for some c ∈ R, we cannot reduce the collection of vectors comprising the
spanning set any further.

We say that if some nontrivial linear combination of some set of vectors produces the zero
vector, such as in (1.4.1), then:

In the preceding
example the set
{a1,a2,a3} is
linearly dependent,
whereas the set
{a1,a2} is linearly
independent.
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Linear dependence

def:161 Definition 1.4.7. The set of vectors S = {a1,a2, . . . ,ak} is linearly dependent if there
is a nontrivial vector x 6= 0 ∈ Rk such that

x1a1 + x2a2 + · · ·+ xkak = 0 . (1.4.2) e:163

Otherwise, the set of vectors is linearly independent.

If the set of vectors is linearly dependent, then (at least) one vector in the collection can be
written as a linear combination of the other vectors (again see (1.4.1)). In particular, two vec-
tors will be linearly dependent if and only if one is a multiple of the other. An examination of
(1.4.2) through the lens of matrix/vector multiplication reveals the left-hand side is Ax . Conse-
quently, we determine if a set of vectors is linearly dependent or independent by solving the
homogeneous linear system

Ax = 0 , A = (a1 a2 · · · ak).

If there is a nontrivial solution, i.e., a solution other than the zero vector, then the vectors will
be linearly dependent; otherwise, they will be independent.

lem:161a Lemma 1.4.8. Let S = {a1,a2, . . . ,ak} be a set of n-vectors, and set

A = (a1 a2 · · · ak) ∈Mn×k(R).

The vectors are linearly dependent if and only the linear system Ax = 0 has a
nontrivial solution. Alternatively, the vectors are linearly independent if and only if
the only solution to Ax = 0 is x = 0 .

Regarding the homogeneous problem, note that if

Ax = 0 ,

then by the linearity of matrix/vector multiplication,

0 = cAx = A (cx ) , c ∈ R.

In other words, if x is a solution to the homogeneous problem, then so is cx for any constant
c. Thus, if the homogeneous system has one nontrivial solution, there will necessarily be an
infinite number of such solutions. Moreover, there can be nontrivial (nonzero) solutions to the
homogeneous problem if and only if there are free variables. In particular, if all of the columns
of A are pivot columns, then the vectors must be linearly independent.

When solving the homogeneous system by Gaussian elimination, it is enough to row reduce
the matrix A only. The augmented matrix (A|0 ) yields no additional information, as the right-
most column remains the zero vector no matter what algebraic operations are performed. With
these observations in mind we can restate Lemma 1.4.8:
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cor:161aa Corollary 1.4.9. Let S = {a1,a2, . . . ,ak} be a set of n-vectors, and set

A = (a1 a2 · · · ak) ∈Mn×k(R).

The vectors are linearly independent if and only if all of the columns of A are pivot
columns.

C Example 1.4.10. Let

a1 =

1
0
1

 , a2 =

 3
−1
4

 , a3 =

−11
−2

 , a4 =

−33
−2

 ,

and consider the sets

S1 = {a1,a2} , S2 = {a1,a2,a3} , S3 = {a1,a2,a3,a4} .

For each set of vectors we wish to determine if they are linearly independent. If they are not,
then we will write down a linear combination of the vectors that yields the zero vector.

Forming the augmented matrix and performing Gaussian elimination gives the RREF of each
given matrix to be

A1 = (a1 a2)
RREF−→

 1 0
0 1
0 0

 , A2 = (a1 a2 a3)
RREF−→

 1 0 2
0 1 −1
0 0 0

 ,

and

A3 = (a1 a2 a3 a4)
RREF−→

 1 0 2 0
0 1 −1 0
0 0 0 1

 .

By Corollary 1.4.9 the vectors in S1 are linearly independent. However, the same cannot be said
for the latter two sets.

The homogeneous linear system associated with the RREF of A2 is

x1 + 2x3 = 0, x2 − x3 = 0.

Since x3 is a free variable, a solution is

x1 = −2t, x2 = t, x3 = t  x =

−21
1

 , t ∈ R.

Using the definition of matrix/vector multiplication we conclude the relationship,

0 = A2

−21
1

 = −2a1 + a2 + a3.

Moreover,
a3 = 2a1 − a2  Span{a1,a2,a3} = Span{a1,a2}.

The homogeneous linear system associated with the RREF of A3 is
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x1 + 2x3 = 0, x2 − x3 = 0, x4 = 0.

Since x3 is still a free variable, a solution is

x1 = −2t, x2 = t, x3 = t, x4 = 0  x =


−2
1
1
0

 , t ∈ R.

Using the definition of matrix/vector multiplication we conclude the relationship as before,

0 = A3


−2
1
1
0

 = −2a1 + a2 + a3.

Moreover,

a3 = 2a1 − a2  Span{a1,a2,a3,a4} = Span{a1,a2,a4}.

C Example 1.4.11. Suppose that S = {a1,a2,a3,a4,a5}, where each aj ∈ R4. Further
suppose that the RREF of A is

A = (a1 a2 a3 a4 a5)
RREF−→


1 0 2 0 −3
0 1 −1 1 2
0 0 0 0 0
0 0 0 0 0

 .

The first two columns of A are the pivot columns, and the remaining columns are associated
with free variables. The homogeneous system associated with the RREF of A is

x1 + 2x3 − 3x5 = 0, x2 − x3 + x4 + 2x5 = 0.

Since x3, x4, x5 are free variables, in vector form the solution to the homogeneous system is

x = r


−2
1
1
0
0

+ s


0
−1
0
1
0

+ t


3
−2
0
0
1

 r, s, t ∈ R.

We then have the relationships,

0 = A


−2
1
1
0
0

 = −2a1 + a2 + a3,

and
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0 = A


0
−1
0
1
0

 = −a2 + a4,

and

0 = A


3
−2
0
0
1

 = 3a1 − 2a2 + a5.

The last three vectors are each a linear combination of the first two,

a3 = 2a1 − a2, a4 = a2, a5 = −3a1 + 2a2,

so
Span {a1,a2,a3,a4,a5} = Span {a1,a2} .

1.4.3 Linear independence of a set of functions
s:wronskian

When discussing linear dependence we can use Definition 1.4.7 in a more general sense. Sup-
pose that {f1, f2, . . . , fk} is a set of real-valued functions, each of which has at least k− 1 con-
tinuous derivatives. We say that these functions are linearly dependent on the interval a < t < b
if there is a nontrivial vector x ∈ Rk such that

x1f1(t) + x2f2(t) + · · ·+ xkfk(t) ≡ 0, a < t < b.

How do we determine if this set of functions is linearly dependent? The problem is that unlike
the previous examples it is not at all clear how to formulate this problem as a homogeneous
linear system.

We overcome this difficulty in the following manner. Suppose that the functions are linearly
dependent. Since the linear combination of the functions is identically zero, it will be the case
that a derivative of the linear combination will also be identically zero, i.e.,

x1f
′
1(t) + x2f

′
2(t) + · · ·+ xkf

′
k(t) ≡ 0, a < t < b.

We can take a derivative of the above to then get

x1f
′′
1 (t) + x2f

′′
2 (t) + · · ·+ xkf

′′
k (t) ≡ 0, a < t < b,

and continuing in the fashion we have for j = 0, . . . , k − 1,

x1f
(j)
1 (t) + x2f

(j)
2 (t) + · · ·+ xkf

(j)
k (t) ≡ 0, a < t < b.

We have now derived a system of k linear equations, which is given by
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W (t)x ≡ 0 , W (t) :=


f1(t) f2(t) · · · fk(t)
f ′1(t) f ′2(t) · · · f ′k(t)
f ′′1 (t) f ′′2 (t) · · · f ′′k (t)

...
...

...
...

f
(k−1)
1 (t) f

(k−1)
2 (t) · · · f (k−1)k (t)

 .

The matrix W (t) is known as the Wronskian for the set of functions {f1(t), f2(t), . . . , fk(t)}.
We now see that the functions will be linearly dependent if there is a nontrivial vector x ,

which does not depend on t, such that W (t)x = 0 for each a < t < b. Conversely, the func-
tions will be linearly independent if there is (at least) one a < t0 < b such that the only solution
to W (t0)x = 0 is the trivial solution x = 0 . In other words, upon invoking Theorem 1.6.9(e)
we see that the functions will be linearly independent if there is (at least) one value of t0 such
that the RREF of W (t0) is the identity matrix I k .
C Example 1.4.12. For a concrete example, consider the set

{
1, t, t2, t3

}
on the interval−∞ <

t < +∞. The Wronskian associated with this set of functions is

W (t) =


1 t t2 t3

0 1 2t 3t2

0 0 2 6t
0 0 0 6

 .

It is clear that

W (0) =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 6

 RREF−→ I 4,

which by the above discussion implies that the set of functions is linearly independent.
C Example 1.4.13. For another example, consider the set {sin(t), cos(t)} on the interval 0 ≤
t ≤ 2π. The Wronskian for this set of functions is

W (t) =

(
sin(t) cos(t)
cos(t) − sin(t)

)
.

It is clear that
W (π/2) =

(
1 0
0 −1

)
RREF−→ I 2,

so the set of functions is linearly independent.

Exercises

Exercise 1.4.1. Determine if b ∈ Span {a1, . . . ,a`} for the following vectors. If the answer is
YES, give the linear combination(s) which makes it true.

(a) b =

(
1
3

)
, a1 =

(
2
3

)
, a2 =

(
3
−5

)
(b) b =

(
−2
5

)
, a1 =

(
4
3

)
, a2 =

(
2
1

)
(c) b =

−5−4
15

 , a1 =

 1
−1
6

 , a2 =

 2
1
−3

 , a3 =

 4
−1
−9
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(d) b =

 1
−2
4

 , a1 =

 1
3
0

 , a2 =

 3
−1
5

 , a3 =

 1
−1
1


Exercise 1.4.2. Find the equation of the line in R2 which corresponds to Span {v1}, where

v1 =

(
2
−5

)
.

Exercise 1.4.3. Find the equation of the plane inR3 which corresponds to Span {v1, v2}, where

v1 =

 1
−2
−1

 , v2 =

 3
0
4

 .

Exercise 1.4.4. Determine if each of the following statements is true or false. Provide an expla-
nation for your answer.

(a) The span of any two nonzero vectors in R3 can be viewed as a plane through the origin
in R3.

(b) If Ax = b is consistent, then b ∈ Span {a1,a2, . . . ,an} for A = (a1 a2 · · · an).
(c) The number of free variables for a linear system is the same as the number of pivot

columns for the coefficient matrix.
(d) The span of a single nonzero vector in R2 can be viewed as a line through the origin in

R2.

Exercise 1.4.5. Is the set of vectors,

S =




2
−1
4
6

 ,


1
−1
6
8

 ,


0
3
2
−5

 ,


−1
1
0
7


 ,

a spanning set for R4? Why, or why not?
Exercise 1.4.6. Determine if the set of vectors is linearly independent. If the answer is NO, give
the weights for the linear combination which results in the zero vector.

(a) a1 =

(
1
−4

)
, a2 =

(
−3
12

)
(b) a1 =

(
2
3

)
, a2 =

(
−1
5

)
(c) a1 =

 1
0
0

 , a2 =

 3
2
3

 , a3 =

 3
2
0


(d) a1 =

 1
3
−2

 , a2 =

−3−5
6

 , a3 =

 0
5
−6


(e) a1 =

 2
−1
4

 , a2 =

 3
4
2

 , a3 =

 0
−11

8


hw:277 Exercise 1.4.7. Show that the following sets of functions are linearly independent:

(a)
{
et, e2t, e3t

}
, where −∞ < t < +∞
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(b) {1, cos(t), sin(t)}, where −∞ < t < +∞
(c)
{
et, tet, t2et, t3et

}
, where −∞ < t < +∞

(d)
{
1, t, t2, . . . , tk

}
for any k ≥ 4, where −∞ < t < +∞

(e)
{
eat, ebt

}
for a 6= b, where −∞ < t < +∞

1.5 The structure of the solution

We now show that we can break up the solution to the consistent linear system,

Ax = b, (1.5.1) e:161

into two distinct pieces.

1.5.1 The homogeneous solution and the null space

As we have already seen in our discussion of linear dependence of vectors, an interesting class
of linear systems which are important to solve arises when b = 0 :

Null(A) is a
nonempty set, as

A · 0 = 0 implies
{0} ⊂ Null(A).

Null space

def:142 Definition 1.5.1. A homogeneous linear system is given by Ax = 0 . A homogeneous
solution, xh, is a solution to a homogeneous linear system. The null space of A, denoted
by Null(A), is the set of all solutions to a homogeneous linear system, i.e.,

Null(A) := {x : Ax = 0} .

Homogeneous linear systems have the important property that linear combinations of solu-
tions are solutions; namely:

lem:141 Lemma 1.5.2. Suppose that x 1,x 2 ∈ Null(A), i.e., they are two solutions to the homo-
geneous linear system Ax = 0 . Then x = c1x 1 + c2x 2 ∈ Null(A) for any c1, c2 ∈ R;
in other words, Span {x 1,x 2} ⊂ Null(A).

Proof. The result follows immediately from the linearity of matrix/vector multiplication (see
Lemma 1.2.4). In particular, we have that

A(c1x 1 + c2x 2) = c1Ax 1 + c2Ax 2 = c10 + c20 = 0 . ut

As a consequence of the fact that linear combinations of vectors in the null space are in the
null space, the homogeneous solution can be written as a linear combination of vectors, each
of which resides in the null space.
C Example 1.5.3. Suppose that
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2

 ,

−14
0

 ∈ Null(A).

Using Lemma 1.5.2 a homogeneous solution can be written,

xh = c1

−42
2

+ c2

−14
0

 ,

and

Span


−42

2

 ,

−14
0

 ⊂ Null(A).

C Example 1.5.4. Suppose that

A =

(
2 −3
−4 6

)
.

It is straightforward to check that

A

(
3
2

)
= 3

(
2
−4

)
+ 2

(
−3
6

)
=

(
0
0

)
,

so that
x 1 =

(
3
2

)
∈ Null(A).

By Lemma 1.5.2 it is then the case that c1x 1 ∈ Null(A) for any c1 ∈ R. This can easily be
checked by noting that

c1x 1 =

(
3c1
2c1

)
 A(c1x 1) = 3c1

(
2
−4

)
+ 2c1

(
−3
6

)
=

(
0
0

)
.

The homogeneous solution to the homogeneous system Ax = 0 is

xh = c

(
3
2

)
.

C Example 1.5.5. Consider the homogeneous system Ax = 0 , where

A =

 1 −1 1 0
−2 1 −5 −1
3 −3 3 0

 .

Recall that in order to solve the linear system it is enough to put A into RREF. Using Gaussian
elimination yields

A
RREF−→

 1 0 4 1
0 1 3 1
0 0 0 0

 ,

which yields the linear system

x1 + 4x3 + x4 = 0, x2 + 3x3 + x4 = 0.
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Upon setting x3 = s, x4 = t the homogeneous solution is

xh =


−4s− t
−3s− t

s
t

 = s


−4
−3
1
0

+ t


−1
−1
0
1

 ,

so

Null(A) = Span



−4
−3
1
0

 ,


−1
−1
0
1


 .

C Example 1.5.6. Consider the homogeneous system Ax = 0 , where

A =


1 2 3 −3
2 1 3 0
1 −1 0 3
−3 2 −1 −7

 .

Using Gaussian elimination gives

A
RREF−→


1 0 1 1
0 1 1 −2
0 0 0 0
0 0 0 0

 ,

which yields the linear system

x1 + x3 + x4 = 0, x2 + x3 − 2x4 = 0.

Again setting x3 = s, x4 = t the homogeneous solution is

xh =


−s− t
−s+ 2t

s
t

 = s


−1
−1
1
0

+ t


−1
2
0
1

 ,

so

Null(A) = Span



−1
−1
1
0

 ,


−1
2
0
1


 .

C Example 1.5.7. Consider the homogeneous linear system Ax = 0 , where

A =


3 4 7 −1
2 6 8 −4
−5 3 −2 −8
7 −2 5 9

 .

We will use WolframAlpha to find a spanning set for Null(A). We have

http://www.wolframalpha.com/
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row reduce 3,4,7,-1,2,6,8,-4,-5,3,-2,-8,7,-2,5,9

Input:

row reduce

3 4 7 -1

2 6 8 -4

-5 3 -2 -8

7 -2 5 9

Result: Step-by-step solution

1 0 1 1

0 1 1 -1

0 0 0 0

0 0 0 0

Dimensions:

4 rows ´ 4 columns

Matrix plot:

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Determinant: Step-by-step solution

0

Trace:

2

Characteristic polynomial:

x
4

- 2 x
3

+ x
2

Eigenvalues:

Λ1 � 1

Λ2 � 1

Λ3 � 0

Λ4 � 0

Generated by Wolfram|Alpha (www.wolframalpha.com) on February 12, 2015 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

The homogeneous linear system associated with the RREF of A is

x1 + x3 + x4 = 0, x2 + x3 − x4 = 0.

The free variables are x3 and x4, so the homogeneous solution is

xh = s


−1
1
0
1

+ t


−1
−1
1
0

 .

The null space is then

Null(A) = Span



−1
1
0
1

 ,


−1
−1
1
0


 .

1.5.2 The particular solution

Again consider the homogeneous equation Ax = 0 . We saw in Definition 1.5.1 that the ho-
mogeneous solution, xh, resides in the null space of A. Let a particular solution to the nonho-
mogeneous problem (1.5.1) (b 6= 0 ) be designated as xp. As a consequence of the linearity of
matrix/vector multiplication we have

A(xh + xp) = Axh +Axp = 0 + b = b.
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In other words, the sum of the homogeneous and particular solutions, xh + xp, is a solution
to the linear system (1.5.1). Indeed, any solution can be written in such a manner, simply by
writing a solution x as x = xh + (x − xh) and designating xp = x − xh.

thm:161 Theorem 1.5.8. All solutions to the linear system (1.5.1) are of the form

x = xh + xp,

where the homogeneous solution xh ∈ Null(A) is independent of b , and the partic-
ular solution xp depends upon b .

The result of Theorem 1.5.8 will be the foundation of solving not only linear systems, but
also linear ordinary differential equations. It should be noted that there is a bit of ambiguity
associated with the homogeneous solution. As we saw in Lemma 1.5.2, if x 1,x 2 ∈ Null(A),
then it will be the case that there is a family of homogeneous solutions given by the linear
combination of these solutions, i.e., xh = c1x 1 + c2x 2 for any constants c1, c2 ∈ R. On the
other hand, there really is no such ambiguity for the particular solution. Indeed, since

A(cxp) = cAxp = cb,

we have that cxp is a particular solution if and only if c = 1.
C Example 1.5.9. Consider a linear system for which

A =


1 3 4 −1
−1 4 3 −6
2 −6 −4 10
0 5 5 −5

 , b =


−2
−5
8
−5

 .

Upon performing Gaussian elimination the RREF of the augmented matrix is given by

(A|b) RREF−→


1 0 1 2 1
0 1 1 −1 −1
0 0 0 0 0
0 0 0 0 0

 .

The original linear system is then equivalent to the system

x1 + x3 + 2x4 = 1, x2 + x3 − x4 = −1. (1.5.2) e:162

The free variables for this system are x3, x4, so by setting x3 = s and x4 = twe get the solution
to be

x =


−s− 2t+ 1
−s+ t− 1

s
t

 = s


−1
−1
1
0

+ t


−2
1
0
1

+


1
−1
0
0

 .

The claim is that for the solution written in this form,

xh = s


−1
−1
1
0

+ t


−2
1
0
1

 , xp =


1
−1
0
0

 .
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It is easy to check that xp is a particular solution,

Axp = A


1
−1
0
0

 =


1
−1
2
0

−


3
4
−6
5

 =


−2
−5
8
−5

 = b.

Note that xp is the last column of the RREF of the augmented matrix (A|b). Similarly, in order
to see that xh is a homogeneous solution, use the linearity of matrix/vector multiplication and
check that

Axh = A(s


−1
−1
1
0

+ t


−2
1
0
1

) = sA


−1
−1
1
0

+ tA


−2
1
0
1

 = 0 .

C Example 1.5.10. Consider the linear system Ax = b , where

A =


3 4 −7 2
2 6 9 −2
−5 3 2 −13
7 −2 5 16

 , b =


5
27
11
−1

 .

We will use WolframAlpha to assist in finding the homogeneous and particular solutions. We
begin by computing the RREF of the augmented matrix (A|b),

row reduce 883,4,-7,2,5<,82,6,9,-2,27<,8-5,3,2,-13,11<,87,-2,5,16,-1<<

Input:

row reduce

3 4 -7 2 5

2 6 9 -2 27

-5 3 2 -13 11

7 -2 5 16 -1

Result: Step-by-step solution

1 0 0 2 0

0 1 0 -1 3

0 0 1 0 1

0 0 0 0 0

Dimensions:

4 HrowsL ´ 5 HcolumnsL

Matrix plot:

1 2 3 4 5

1

2

3

4

1 2 3 4 5

1

2

3

4

Pseudoinverse: Approximate form

1

57

13 4 -6 0

4 10 -15 0

-6 -15 51 0

22 -2 3 0

6 15 6 0

Matrix rank:

3

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

The linear system corresponding to the RREF is

x1 + 2x4 = 0, x2 − x4 = 3, x3 = 1.

The variable x4 is the free variable, and the solution is given by

http://www.wolframalpha.com/
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x =


−2t
t+ 3
1
t

 = t


−2
1
0
1

+


0
3
1
0


The homogeneous solution is that with a free parameter,

xh = t


−2
1
0
1

 ;

moreover, we have

Null(A) = Span



−2
1
0
1


 .

A particular solution is what remains,

xp =


0
3
1
0

 .

Note that the chosen particular solution is the last column of the RREF of (A|b).

Exercises

Exercise 1.5.1. For each matrix A, find Null(A).

(a) A =

(
1 2
3 1

)
(b) A =

(
1 2 3 −2
3 1 3 0

)
(c) A =

 1 2 1
3 1 8
−1 −3 0


(d) A =

(
1 2
4 8

)
Exercise 1.5.2. Suppose that A ∈Mm×n(R).

(a) Show that if m < n, then Null(A) is necessarily nontrivial; in other words, Null(A) =
Span {b1, . . . , b`} for some ` ≥ 1. What is a lower bound on `?

(b) Give examples to show that if m ≥ n, then Null(A) may or may not be trivial.
Exercise 1.5.3. For each matrix A find the general solution xh to the homogeneous problem
Ax = 0 .

(a)
(

1 3
−2 −6

)
(b)

 1 3 8
−1 2 2
3 −4 −2
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(c)

−2 1 −5 −6
3 −2 7 11
4 5 17 −16


Exercise 1.5.4. For each matrix A and vector b write the solution to Ax = b as x = xh + xp,
where xh is the general solution to the homogeneous problem and xp is a particular solution.
Explicitly identify xh and xp.

(a)
(

1 3
−2 −6

)
, b =

(
−4
8

)
(b)

 1 3 8
−1 2 2
3 −4 −2

 , b =

 10
0
4


(c)

−2 1 −5 −6
3 −2 7 11
4 5 17 −16

 , b =

−813
2


Exercise 1.5.5. Given the RREF of (A|b), find the general solution. Identify the homogeneous
solution, xh, and particular solution, xp.

(a)
(
1 0 7
0 1 5

)
(b)

 1 0 2 −3
0 1 −4 2
0 0 0 0


(c)
(
0 1 0 4
0 0 1 6

)
(d)
(
1 0 −3 5 7
0 1 1 −2 9

)
(e)

 1 0 0 −6 2
0 0 1 2 −5
0 0 0 0 0



1.6 Equivalence results

Before continuing we wish to summarize the results we have so far proven. Moreover, we wish
to connect these results to the RREF of the appropriate matrix A. We break these results into
four separate pieces.

1.6.1 A solution exists

When we defined matrix/vector multiplication so that the linear system makes sense as Ax =
b , we showed that the linear system is consistent if and only if for some scalars x1, x2, . . . , xn ∈
R,

b = x1a1 + x2a2 + · · ·+ xnan, A = (a1 a2 · · · an).

Using Definition 1.4.1 for the span of a collection of vectors it is then the case that the system
is consistent if and only if
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b ∈ Span {a1,a2, . . . ,an} .

On the other hand, we solve the system by using Gaussian elimination to put the augmented
matrix (A|b) into RREF. We know that the system is inconsistent if the RREF form of the
augmented matrix has a row of the form (0 0 0 · · · 0|1); otherwise, it is consistent. These ob-
servations lead to the following equivalence result:

thm:151 Theorem 1.6.1. Regarding the linear system Ax = b , where A = (a1 a2 · · · an),
the following are equivalent statements:

(a) the system is consistent
(b) b is a linear combination of the columns of A
(c) b ∈ Span {a1,a2, . . . ,an}
(d) the RREF of the augmented matrix (A|b) has no rows of the form

(0 0 0 · · · 0|1).

C Example 1.6.2. Suppose that the coefficient matrix is given by

A =

(
1 2
3 6

)
.

Gaussian elimination yields that the RREF of A is

A
RREF−→

(
1 2
0 0

)
.

Since the RREF of A has a zero row, the system Ax = b is not consistent for all b . Since

Ax = x1

(
1
3

)
+ x2

(
2
6

)
= (x1 + 2x2)

(
1
3

)
,

we have that
Span

{(
1
3

)
,

(
2
6

)}
= Span

{(
1
3

)}
;

thus, Ax = b is by Theorem 1.6.1 consistent if and only if

b ∈ Span

{(
1
3

)}
 b = c

(
1
3

)
, c ∈ R.

In other words, the vector b must be a scalar multiple of the first column of A.

1.6.2 A solution always exists

We now wish to refine Theorem 1.6.1 in order to determine criteria which guarantee that the
linear system is consistent for any vector b . First, points (b)-(c) of Theorem 1.6.1 must be refined
to say that for any b ∈ Rm, b ∈ Span {a1, . . . ,an}; in other words, Span {a1, . . . ,an} = Rm.
Additionally, for a given b no row of the RREF of the augmented matrix (A|b) has row(s) of
the form (0 0 0 · · · 0|0). Equivalently, the RREF of A must not have a zero row. If this is the
case, then another vector b can be found such that the system will be inconsistent.
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For example, if the RREF of the augmented system for some vector b1 is

(A|b1)
RREF−→

(
1 −3 5
0 0 0

)
,

then the system Ax = b1 is consistent. However, for this coefficient matrix A there will exist
vectors b2 such that

(A|b2)
RREF−→

(
1 −3 0
0 0 1

)
,

so that the system Ax = b2 is not consistent.

cor:151 Theorem 1.6.3. Regarding the linear system Ax = b , where A = (a1 a2 · · · an) and
b ∈ Rm, the following are equivalent statements:

(a) the system is consistent for any b
(b) Rm = Span {a1,a2, . . . ,an}
(c) the RREF of A has no zero rows.

C Example 1.6.4. Suppose that the coefficient matrix is given by

A =

(
1 −4
3 6

)
.

Since Gaussian elimination yields that the RREF of A is I 2, by Theorem 1.6.3 the linear system
Ax = b is consistent for any b ∈ R2.

1.6.3 A unique solution exists

From Theorem 1.5.8 we know that all solutions are given by x = xh + xp, where xh ∈
Null(A) is a homogeneous solution and xp is a particular solution. Since cxh ∈ Null(A)
for any c ∈ R (see Lemma 1.5.2), we know that if xh 6= 0 , then the linear system has an
infinite number of solutions. Since Null(A) = {0} if and only if the the linear system has no
free variables, a solution can be unique if and only if every column is a pivot column. Now,
following the discussion after Definition 1.4.7 we know that the columns of a matrix A are
linearly independent if and only if the only solution to the homogeneous problem Ax = 0 is
the trivial solution x = 0 . In other words, the columns are linearly independent if and only if
Null(A) = {0}. We can summarize our discussion with the following result:

thm:162 Theorem 1.6.5. The following statements about a matrix A ∈ Mm×n(R) are equiv-
alent:

(a) there is at most one solution to the linear system Ax = b
(b) the linear system has no free variables
(c) every column of A is a pivot column
(d) the columns of A are linearly independent
(e) Null(A) = {0} (the only solution to the homogeneous system Ax = 0 is x =

0 ).
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C Example 1.6.6. Suppose that

A
RREF−→

 1 0 −5
0 1 3
0 0 0

 .

Since only the first two columns of A are pivot columns, and

Null(A) = Span


 5
−3
1

  a3 = −5a1 + 3a2,

solutions to Ax = b , if they exist, cannot be unique. Moreover, since the RREF of A has a zero
row, the linear system will not always be consistent. In order for the system to be consistent, it
is necessary that b ∈ Span ({a1,a2}).
C Example 1.6.7. Suppose that A ∈M6×4(R) has 4 pivot columns. Since that is the maximal
number of pivot columns, by Theorem 1.6.5 the columns are a linearly independent set. Con-
sequently, the solution to a consistent linear system, Ax = b , will be unique. The columns do
not form a spanning set for R6, however, since the RREF of A will have two zero rows.
C Example 1.6.8. Suppose that A ∈ M3×5(R). Since A has more columns than rows, it is
impossible for the RREF of A to have a pivot position in every column. Indeed, the linear system
must have at least two free variables, and there can be no more than three pivot columns. Hence,
by Theorem 1.6.5 the columns of A cannot be linearly independent. We cannot say that the
columns form a spanning set for R3 without knowing something more about the RREF of A. If
we are told that the RREF of A has two pivot positions, then the RREF of A has one zero row;
hence, by Theorem 1.6.3 the columns cannot form a spanning set. However, if we are told that
the RREF of A has three pivot positions (the maximum number possible), then the RREF of A
has no zero rows, which by Theorem 1.6.3 means that the columns do indeed form a spanning
set. In any case, the existence of free variables means that there will be an infinite number of
solutions to any consistent linear system, Ax = b .

1.6.4 A unique solution always exists
s:254

We finally consider the problem of determining when there will always be a unique solution
to the linear system. By Theorem 1.6.5(c) the existence of a unique solution requires that every
column be a pivot column. This is possible if and only if the the linear system has no free
variables. In order for the linear system to have no free variables, the number of rows is greater
than or equal to the number of columns. On the other hand, by Theorem 1.6.3(c) the existence
of a solution requires that the RREF of A have no zeros rows. The lack of zero rows in the RREF
of A is possible if and only if the number of rows is greater than or equal to the number of
columns. In conclusion, we see that it is possible to always have a unique solution if and only
if the number of rows is equal to the number of columns, i.e., if the matrix is square.

Henceforth assume that A is square. The RREF of A can have free variables if and only if
the RREF of A has zero rows. If the RREF of A has no zero rows, then since it is square:

(a) the RREF of A is the identity matrix I n
(b) the columns of A are linearly independent.
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By Theorem 1.6.1 the lack of zero rows for the RREF of A means that the system Ax = b is
consistent for any b , and by Theorem 1.6.3 this lack of zero rows implies that the columns of
A form a spanning set for Rn.

cor:162 Theorem 1.6.9. The following statements about a square matrix A ∈ Mn(R) are
equivalent:

(a) there is only one solution to the linear system Ax = b for any b
(b) the RREF of A is I n
(c) the columns of A are linearly independent
(d) the columns of A form a spanning set for Rn
(e) Null(A) = {0}.

C Example 1.6.10. We have

A =

 1 2 3
4 5 9
−1 4 3

 RREF−→

 1 0 1
0 1 1
0 0 0

 .

Since the RREF of A is not the identity, I 3, the linear system Ax = b is not always consistent.
If it is consistent, since

Null(A) = Span


−1−1

1

  −a1 − a2 + a3 = 0 ,

the columns of A are not linearly independent, so the solution will not be unique.

Exercises

Exercise 1.6.1. Suppose that the RREF of A ∈M5(R) has one zero row.

(a) Is Ax = b consistent for any b ∈ R5? Why, or why not?
(b) If Ax = b is consistent, how many solutions are there?

Exercise 1.6.2. Suppose that the RREF of A ∈M9(R) has seven pivot columns.

(a) Is Ax = b consistent for any b ∈ R9? Why, or why not?
(b) If Ax = b is consistent, how many solutions are there?

Exercise 1.6.3. Determine if each of the following statements is true or false. Provide an expla-
nation for your answer.

(a) If A ∈M5×3(R), then it is possible for the columns of A to span R3.
(b) If the RREF of A ∈ M9×7(R) has three zeros rows, then Ax = b is consistent for any

vector b ∈ R9.
(c) If A ∈M5×9(R), then Ax = b is consistent for any b ∈ R5.
(d) If the RREF of A ∈M12×16(R) has 12 pivot columns, then Ax = b is consistent for any

b ∈ R12.
(e) If Av j = 0 for j = 1, 2, then x1v1 + x2v2 ∈ Null(A) for any x1, x2 ∈ R.
(f) If A ∈ M5×7(R) is such that Ax = b is consistent for every vector b ∈ R5, then the

RREF of A has at least one zero row.
(g) If A ∈M7×6(R), then Ax = b is consistent for any b ∈ R7.
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Exercise 1.6.4. For the given set S, determine whether the set is linearly dependent or linearly
independent.

(a) S = {v1, v2}, where

v1 =

(
3
−4

)
, v2 =

(
1
2

)
.

(b) S = {v1, v2}, where

v1 =

(
2
−5

)
, v2 =

(
−4
10

)
.

(c) S = {v1, v2, v3}, where

v1 =

 2
3
−1

 , v2 =

 1
2
−6

 , v3 =

 9
15
7

 .

(d) S = {v1, v2, v3, v4}, where

v1 =

 1
−2
0

 , v2 =

 3
−2
5

 , v3 =

−71
4

 , v4 =

 0
−5
8

 .

Exercise 1.6.5. Set

v1 =

 1
−2
−5

 , v2 =

−21
3

 , v3 =

 8
−7
r

 .

(a) For which value(s) of r are the vectors v1, v2, v3 linearly independent?
(b) For which value(s) of r is v3 ∈ Span {v1, v2}?
(c) How are (a) and (b) related?

Exercise 1.6.6. Suppose that A ∈ M5×9(R), and further suppose the associated linear system
for which A is the coefficient matrix has five free variables.

(a) Do the columns of A span R5? Explain.
(b) Are the columns of A linearly dependent, linearly independent, or is not possible to say

without more information? Explain.

Exercise 1.6.7. Suppose that A ∈ M7×4(R), and further suppose the associated linear system
for which A is the coefficient matrix has zero free variables.

(a) Do the columns of A span R7? Explain.
(b) Are the columns of A linearly dependent, linearly independent, or is not possible to say

without more information? Explain.

Exercise 1.6.8. Suppose that A ∈ Mm×n(R). For what relationship between m and n will it
be necessarily true that:

(a) Null(A) is nontrivial.
(b) the columns of A do not span Rm.

Exercise 1.6.9. Determine if each of the following statements is true or false. Provide an expla-
nation for your answer.

(a) If A ∈Mm×n(R) with m > n, then the columns of A must be linearly independent.
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(b) If A ∈Mm×n(R) has a pivot in every column, then the columns of A span Rm.
(c) If Null(A) is nontrivial, then the columns of A are linearly independent.
(d) If A ∈Mm×n(R) with m 6= n, then it is possible for the columns of A to both span Rm

and be linearly independent.

1.7 Subspaces
s:subspace

Recall by Lemma 1.5.2 that the null space of A, Null(A), satisfies the linearity property,

x 1,x 2 ∈ Null(A)  c1x 1 + c2x 2 ∈ Null(A), c1, c2 ∈ R.

The null space is an important example of a more general set:
If S is a subspace,
then 0 ∈ S.Subspace

def:171 Definition 1.7.1. A nonempty set S ⊂ Rn is a subspace if

x 1,x 2 ∈ S  c1x 1 + c2x 2 ∈ S, c1, c2 ∈ R.

1.7.1 Vector spaces

The set Rn is an example of a vector space. A real vector space, V , is a collection of elements,
called vectors, on which are defined two operations, addition and scalar multiplication by real
numbers. If x ,y ∈ V , then c1x + c2y ∈ V for any real scalars c1, c2. The following axioms
must also be satisfied:

(a) commutativity of vector addition: x + y = y + x
(b) associativity of vector addition: (x + y) + z = x + (y + z )
(c) existence of an additive identity: there is a 0 ∈ V such that x + 0 = x
(d) existence of an additive inverse: for each x there is a y such that x + y = 0
(e) existence of a multiplicative identity: 1 · x = x
(f) first multiplicative distributive law: c(x + y) = cx + cy
(g) second multiplicative distributive law: (c1 + c2)x = c1x + c2x
(h) relation to ordinary multiplication: (c1c2)x = c1(c2x ) = c2(c1x ).

The set of all vectors
with
complex-valued
coefficients, Cn, is a
vector space (see
Chapter 1.13 if you
are not familiar with
complex numbers).
In this case the
constants c1 and c2
are complex-valued.

Examples of vector spaces include:

(a) the set of n-vectors, Rn,
(b) the set of matricesMm×n(R)
(c) the set of all polynomials of degree n.

1.7.2 Subspaces and span

Going back to subspaces of Rn, which is all we will (primarily) be concerned with in this text,
by using the Definition 1.7.1 we see that that the span of a collection of vectors is a subspace:
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lem:171 Lemma 1.7.2. The set S = Span {a1,a2, . . . ,ak} is a subspace.

Proof. Suppose that b1, b2 ∈ S. By Lemma 1.4.2 there exist vectors x 1,x 2 such that for A =
(a1 a2 · · · ak),

Ax 1 = b1, Ax 2 = b2.

We must now show that for the vector b = c1b1 + c2b2 there is a vector x such that Ax = b ,
as it will then be true that b ∈ S. However, if we choose x = c1x 1+ c2x 2, then by the linearity
of matrix/vector multiplication we have that

Ax = A(c1x 1 + c2x 2) = c1Ax 1 + c2Ax 2 = c1b1 + c2b2 = b. ut

The converse also holds. It can be shown that any subspace of Rn is realized as the span of
some finite collection of vectors in Rn (see Lemma 1.8.16). In other words, in the vector space
Rn there are no other subspaces other than those given in Lemma 1.7.2.

lem:171a Theorem 1.7.3. S ⊂ Rn is a subspace if and only if there is a collection of vectors
{a1,a2, . . . ,ak} such that S = Span {a1,a2, . . . ,ak}.

C Example 1.7.4. Suppose that

S =


x1 + 2x2
−3x2

4x1 + x2

 : x1, x2 ∈ R

 .

Since x1 + 2x2
−3x2

4x1 + x2

 = x1

 1
0
4

+ x2

 2
−3
1

 = Span


 1

0
4

 ,

 2
−3
1

 ,

by Theorem 1.7.3 the set is a subspace.
C Example 1.7.5. Suppose that

S =


x1 + 2x2

1− 3x2
4x1 + x2

 : x1, x2 ∈ R

 .

We have that b ∈ S if and only if

b =

 0
1
0

+ x1

 1
0
4

+ x2

 2
−3
1

 .

If S is a subspace, then it must contain the zero vector. Writing

0 =

 0
1
0

+ x1

 1
0
4

+ x2

 2
−3
1

 =

 0
1
0

+

 1 2
0 −3
4 1

(x1
x2

)
,

upon using
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0 −3 −1
4 1 0

 RREF−→

 1 0 0
0 1 0
0 0 1


we see the linear system is inconsistent. Since 0 /∈ S, the set is not a subspace.

1.7.3 The column space

Another important example of a subspace which is directly associated with a matrix is the
column space:

The column space is
also known as the
range of A, R(A).

Column space

def:171a Definition 1.7.6. The column space of a matrix A, Col(A), is the set of all linear com-
binations of the columns of A.

Setting A = (a1 a1 · · · ak), we can rewrite the column space as

Col(A) = {x1a1 + x1a2 + · · ·+ xkak : x1, x2, . . . , xk ∈ R}
= Span {a1,a2, . . . ,ak} .

By Lemma 1.7.2 Col(A) is a subspace. Furthermore, if b ∈ Col(A), then for some weights
x1, . . . , xk ,

b = x1a1 + x2a2 + · · ·+ xkak  b = Ax .

The formulation on the right follows from the definition of matrix/vector multiplication. This
gives us:

lem:172 Lemma 1.7.7. Col(A) is a subspace, and the column space has the equivalent defi-
nition

Col(A) = {b : Ax = b is consistent} .

With these notions in mind, we can revisit the statement of Theorem 1.6.1 in order to make
an equivalent statement. Theorem 1.6.1(c) states that a linear system is consistent if and only if
the vector b is in the span of the column vectors of the matrix A. The definition of the column
space and the formulation of Lemma 1.7.7 yields the following restatement of Theorem 1.6.1:

lem:172a Theorem 1.7.8. Regarding the linear system Ax = b , where A = (a1 a2 · · · an), the
following are equivalent statements:

(a) the system is consistent
(b) b ∈ Col(A)
(c) the RREF of the augmented matrix (A|b) has no rows of the form (0 0 0 · · · 0|1).

Exercises

Exercise 1.7.1. Set
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S =


 2s− 3t
−s+ 4t

7t

 : s, t ∈ R

 ⊂ R3.

Is S a subspace? If so, determine vectors x 1,x 2, . . . ,xk such that S = Span {x 1,x 2, . . . ,xk}.
Otherwise, explain why S is not a subspace.
Exercise 1.7.2. Set

S =


 4s+ 2t

1− 3s− t
s+ 9t

 : s, t ∈ R

 ⊂ R3.

Is S a subspace? If so, determine vectors x 1,x 2, . . . ,xk such that S = Span {x 1,x 2, . . . ,xk}.
Otherwise, explain why S is not a subspace.

hw:263 Exercise 1.7.3. Let A,B ⊂ Rn be subspaces, and define

A+B = {x : x = a + b, a ∈ A, b ∈ B} .

Show that A + B is a subspace. (Hint: use the fact that set is a subspace if and only if it is the
span of a collection of vectors)
Exercise 1.7.4. If

A =

(
−4 7 0
3 5 1

)
, b =

(
−6
5

)
,

is b ∈ Col(A)? Explain your answer.
Exercise 1.7.5. If

A =

 3 −1
2 7
−4 9

 , b =

 2
4
−1

 ,

is b ∈ Col(A)? Explain your answer.
Exercise 1.7.6. If

A =

 5 2 −3
−4 9 0
2 6 −7

 , b =

−58
2

 ,

is b ∈ Col(A)? Explain your answer.
Exercise 1.7.7. Set

A =

 1 −3
2 5
−1 4

 , u =

 2
−4
7

 , v =

−316
5

 .

(a) Is u ∈ Col(A)? Explain.
(b) Is v ∈ Col(A)? Explain.
(c) Describe all vectors that belong to Col(A) as the span of a finite set of vectors.

Exercise 1.7.8. Show that the set of 2× 2 matrices,M2(R), is a vector space.
Exercise 1.7.9. Consider the set of matrices inM2(R) given by

S =

{
A =

(
a b
c d

)
: a+ d = 0

}
.
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Show that S is a subspace. (Hint: find a set of matrices such that any A ∈ S can be written as
a linear combination of these matrices)
Exercise 1.7.10. Show that the set of third-order polynomials,

P3(R) = {a0 + a1t+ a2t
2 + a3t

3 : a0, . . . , a3 ∈ R},

is a vector space.
Exercise 1.7.11. Consider the set of polynomials in P3(R) given by

S = {p ∈ P3(R) : p′(1) = 0} .

Show that S is a subspace. (Hint: find a set of polynomials such that any p ∈ S can be written
as a linear combination of these polynomials)

1.8 Basis and dimension
s:272

1.8.1 Basis

The next question to consider is the “size” of a subspace. The number that we assign to the “size”
should reflect the intuition that a plane in R3 is bigger than a line in R3, and hence the number
assigned to a plane should be larger than the number associated with the line. Regarding a
given plane going through the origin in R3, while the geometric object itself is unique, there are
many ways to describe it. For example, in Calculus we learned that it can be described as being
the set of all vectors which are perpendicular to a certain vector. Conversely, we could describe
it as the span of a collection of vectors which lie in the plane. The latter notion is the one that
we will use, as it more easily generalizes to higher dimensions. One way to determine the “size”
of the subspace is to then count the number of spanning vectors. Because an arbitrarily high
number of vectors could be used as the spanning set, in order to uniquely determine the size of
the space we must restrict the possible number of spanning vectors as much as possible. This
restriction requires that we use only the linearly independent vectors (see Definition 1.4.7) in
the spanning set. We first label these vectors:

Basis
def:172 Definition 1.8.1. A set B = {a1,a2, . . . ,ak} is a basis for a subspace S if

(a) the vectors a1,a2, . . . ,ak are linearly independent
(b) S = Span {a1,a2, . . . ,ak}.

In other words, the set of vectors is a basis if
(a) any vector in S can be written as a linear combination of the basis vectors
(b) there are not so many vectors in the set that (at least) one of them can be written as a

linear combination of the others.
C Example 1.8.2. We wish to find a basis for the column space, Col(A), of the matrix

A =

−2 3 −1
3 −5 1
6 −7 5

 .
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Since

A
RREF−→

1 0 2
0 1 1
0 0 0

 ,

we have

Null(A) = Span


−2−1

1

  a3 = 2a1 + a2.

Consequently, regarding the column space we have

Col(A) = Span


−23

6

 ,

 3
−5
−7

 .

These first two columns are clearly linearly independent. In conclusion, these two pivot
columns are a basis for Col(A).

The previous example, as well as the several examples we did in Chapter 1.4, point us to-
wards a general truth. In all these examples a set of linearly independent vectors in the set of
column vectors, {a1,a2, . . . ,ak}, which form a spanning set for Col(A) were found by re-
moving from the original set those columns which correspond to free variables for associated
homogeneous linear system. In other words, a set of linearly independent vectors which which
span the column space is the collection of pivot columns. In general, it is a relatively straightfor-
ward exercise (see Exercise 1.8.12) to show that each column of a matrix A which is not a pivot
column can be written as a linear combination of the pivot columns. Thus, by the definition of
basis we have:

ex:column Lemma 1.8.3. The pivot columns of A ∈ Mm×n(R) form a basis for the column
space, Col(A).

C Example 1.8.4. Let

a1 =

 1
−1
2

 , a2 =

3
4
7

 , a3 =

 0
−7
−1

 ,

and set S = {a1,a2,a3}. It can be checked that

A = (a1 a2 a3)
RREF−→

 1 0 3
0 1 −1
0 0 0

 .

The first and second columns of A are the pivot columns, so

Span {a1,a2,a3} = Span {a1,a2} .

Since

Null(A) = Span


−31

1

 ,
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we have for the remaining vector,

−3a1 + a2 + a3 = 0  a3 = 3a1 − a2.

C Example 1.8.5. Suppose that S = {a1,a2,a3,a4}, where each aj ∈ R5. Further suppose
that the RREF of A is

A = (a1 a2 a3 a4)
RREF−→


1 1 0 3
0 0 1 4
0 0 0 0
0 0 0 0
0 0 0 0

 .

The first and third columns of A are the pivot columns, so

Span {a1,a2,a3,a4} = Span {a1,a3} .

Since

Null(A) = Span



−1
1
0
0

 ,


−3
0
−4
1


 ,

for the other two vectors we have the relationships,

a2 = a1, a4 = 3a1 + 4a3.

A basis for a subspace is not unique. For example,

B1 =


 1

0
0

 ,

 0
1
0

 , B2 =


 1

1
0

 ,

 1
−1
0

 ,

are each a basis for the x1x2-plane in R3. However, we do have the intuitive result that the
number of basis vectors for a subspace is unique.

lem:173 Lemma 1.8.6. If A = {a1, . . . ,ak} and B = {b1, . . . , bm} are two bases for a sub-
space S, then k = m. In other words, all bases for a subspace have the same number
of vectors.

Proof. The result is geometrically intuitive. The mathematical proof is as follows. Start by form-
ing the matrices A and B via

A = (a1 a2 · · · ak), B = (b1 b2 · · · bm).

The columns of each matrix are linearly independent, so by Theorem 1.6.5(e) the null space of
each matrix is trivial,

Null(A) = {0} , Null(B) = {0} .

Since A is a basis, each vector in B is a linear combination of the vectors in A; in particular, for
each bj there is a vector cj such that

bj = Acj , j = 1, . . . ,m.
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If we set
C = (c1 c2 · · · cm) ∈Mk×m(R),

the matrices A and B are then related by

B = (b1 b2 · · · bm) = (Ac1 Ac2 · · · Acm) = AC .

Suppose that s ∈ S. Since A and B are each a basis there exist unique vectors xA and xB
such that

s = AxA = BxB .

But, the relation B = AC implies that

AxA = (AC )xB = A(CxB)  A(xA −CxB) = 0

(the last implicated equality follows from the linearity of matrix/matrix multiplication). Recalling
that Null(A) = {0}, xA and xB are related via

A(xA −CxB) = 0  xA −CxB = 0  xA = CxB .

Finally, consider the linear system Cx = y . For a given y = xA, there is a unique solu-
tion x = xB . This follows simply from the fact that for a given vector s ∈ S there are the
corresponding vectors xA and xB , and these are related through matrix/vector multiplication,
xA = CxB . Since the linear system always has a unique solution, we know from our discus-
sion leading to Theorem 1.6.9 that the matrix C must be square. Thus, k = m, which is the
desired result. ut

1.8.2 Dimension and rank
s:172

Because the number of vectors in a basis of a subspace is fixed, this quantity gives a good way
to describe the “size” of a subspace.

Dimension
def:173 Definition 1.8.7. If B = {a1,a2, . . . ,ak} is a basis for a subspace S, then the dimen-

sion of S, dim[S], is the number of basis vectors:

dim[S] = k.dim[{0}] = 0

example:basis C Example 1.8.8. Let ej for j = 1, . . . , n denote the jth column vector in the identity matrix
I n. Since I n is in RREF, by Theorem 1.6.9 the set {e1, e2, . . . , en} is linearly independent and
forms a spanning set for Rn; in other words, it is a basis for Rn. By Definition 1.8.7 we then
have the familiar result that dim[Rn] = n.

Regarding the dimension of the column space, we use the following moniker:
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Rank
def:173a Definition 1.8.9. The dimension of the column space of a matrix is known as the rank,

rank(A) = dim[Col(A)].

1

0

1

1

00

00

0

free variable columnspivot columns

Fig. 1.2 (color online) A cartoon of a matrix in RREF. A vertical (blue) line represents a column associ-
ated with a free variable. The remaining columns are pivot columns. f:rank

We now relate the column space to the null space through their dimensions. The pivot
columns of the RREF of A are a basis for Col(A) (see Lemma 1.8.3), so

rank(A) = # of pivot columns.

In addition, the number of free variables is the number of linearly independent vectors that
form a spanning set for Null(A). Consequently, we can say

dim[Null(A)] = # of free variables.

Since a column of the RREF of A is either a pivot column, or is associated with a free variable
(see Figure 1.2), upon using the fact that sum of the number of pivot columns and the number
of free variables is the total number of columns, we get:

lem:174 Lemma 1.8.10. For the matrix A ∈Mm×n(R),

rank(A) + dim[Null(A)] = n.

The dimension of the column space gives us one more bit of information. Suppose that
A ∈ Mm×n(R), so that Col(A) ⊂ Rm. Upon invoking a paraphrase of Theorem 1.6.3, we
know that Ax = b is consistent for any b ∈ Rm if and only if the RREF of A has precisely m
pivot columns. In other words, the system is consistent for any b if and only if

rank(A) = dim[Rm] = m ⇔ dim[Null(A)] = n−m.
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If rank(A) ≤ m− 1, then it will necessarily be the case that Ax = b will not be consistent for
all b . For example, if A ∈ M3(R) and rank(A) = 2, then it will be the case that the subspace
Col(A) is a plane, and the linear system Ax = b will be consistent if and only if the vector b
is parallel to that plane.

We now restate the equivalency Theorem 1.6.3 and equivalency Theorem 1.6.5. The first
theorem discusses conditions which ensure that a linear system always has a unique solution:

If any of the
equivalent
conditions

Theorem 1.8.11(a)-(c)
hold, then A is said

to have full rank.

thm:171 Theorem 1.8.11. The following statements about a matrixMm×n(R) are equivalent:

(a) the linear system Ax = b is consistent for any b
(b) dim[Null(A)] = n−m
(c) rank(A) = m.

This next result gives conditions which ensure that consistent systems have unique solutions:

thm:171aa Theorem 1.8.12. The following statements about a matrixMm×n(R) are equivalent:

(a) there is at most one solution to the linear system Ax = b
(b) dim[Null(A)] = 0
(c) rank(A) = n.

If we wish that the linear system Ax = b be both consistent for all b , and to have only
unique solutions, then we saw in Chapter 1.6.4 that this is possible only if A is a square matrix,
i.e., m = n. If the solution is to be unique, then by Theorem 1.8.11(b) we must have

dim[Null(A)] = 0.

If the linear system is to be consistent, then by Theorem 1.8.12(c) the rank of the matrix must
be the number of rows, i.e.,

rank(A) = n.

In terms of dimensions we can then restate Theorem 1.6.9 to say:

thm:163 Theorem 1.8.13. Consider the linear system Ax = b , where A ∈ Mn(R). The fol-
lowing statements are equivalent:

(a) there is a unique solution to the linear system for any b
(b) rank(A) = n
(c) dim[Null(A)] = 0.

C Example 1.8.14. Suppose that

A =

1 3 −2 1
1 −1 2 1
3 4 −1 1

 RREF−→

 1 0 1 0
0 1 −1 0
0 0 0 1

 .

Since the pivot columns are the first, second, and fourth columns of the RREF of A, a basis for
Col(A) is given by the set 

 1
1
3

 ,

 3
−1
4

 ,

1
1
1

 .
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Since rank(A) = 3 = dim[R3], the linear system Ax = b is consistent for any b ∈ R3. Since
dim[Null(A)] = 1 > 0, the solutions are not unique.
C Example 1.8.15. We now compute Col(A) and Null(A) with the assistance of WolframAl-
pha. Here A ∈M4(R) is given by

A =


1 2 3 4
−1 2 1 0
5 6 11 16
2 4 6 8

 .

We start with

row reduce 881,2,3,4<,8-1,2,1,0<,85,6,11,16<,82,4,6,8<<

Input:

row reduce

1 2 3 4

-1 2 1 0

5 6 11 16

2 4 6 8

Result: Step-by-step solution

1 0 1 2

0 1 1 1

0 0 0 0

0 0 0 0

Dimensions:

4 HrowsL ´ 4 HcolumnsL

Matrix plot:

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Determinant: Step-by-step solution

0

Trace:

2

Characteristic polynomial:

x
4

- 2 x
3

+ x
2

Eigenvalues:

Λ1 � 1

Λ2 � 1

Λ3 � 0

Λ4 � 0

Generated by Wolfram|Alpha (www.wolframalpha.com) on February 12, 2015 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

Since there are two pivot columns and two columns associated with free variables, rank(A) =
2, and dim[Null(A)] = 2. Since rank(A) < dim[R4] = 4, the linear system will not necessarily
be consistent. Since dim[Null(A)] ≥ 1, if the system is consistent, there will be an infinite
number of solution.

A basis for Col(A) is the pivot columns of A, which are the first two columns,

Col(A) = Span




1
−1
5
2

 ,


2
2
6
4


 .

As for the null space, the homogeneous linear system associated with the RREF of A is

x1 + x3 + 2x4 = 0, x2 + x3 + x4 = 0.

Since x3 and x4 are the free variables, the homogeneous solution is

http://www.wolframalpha.com/
http://www.wolframalpha.com/
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xh =


−s− 2t
−s− t
s
t

 = s


−1
−1
1
0

+ t


−2
−1
0
1

 .

The null space is then

Null(A) = Span



−1
−1
1
0

 ,


−2
−1
0
1


 .

We conclude by completing the proof of Theorem 1.7.3, and make the definitive statement
that any subspace of Rn can be realized as the span of a finite set of vectors.

lem:subspan Lemma 1.8.16. Let S ⊂ Rn be a subspace. For some k ≤ n there is a finite collection
of linearly independent vectors, a1,a2, . . . ,ak , such that S = Span{a1,a2, . . . ,ak}.

Proof. By Exercise 1.8.14 we can write S = Span(S). We now need to provide an upper
bound for the dimension of the subspace. Let {a1,a2, . . . ,ak} ⊂ S be a collection of linearly
independent vectors. Set

A = (a1 a2 · · · ak) ∈Mn×k(R).

Using the result of Exercise 1.8.15 we have Col(A) ⊂ S. Since the columns are linearly inde-
pendent, rank(A) = k. In order for every column to be a pivot column, we need k ≤ n.

In conclusion, S can be written as a span of some collection of vectors. Moreover, the sub-
space can contain no more than n linearly independent vectors, so dim[S] ≤ n. The result
follows. ut

Exercises

Exercise 1.8.1. For each of the following matrices not only find a basis for Col(A) and Null(A),
but determine rank(A) and dim[Null(A)].

(a) A =

 1 3 2
2 1 4
4 7 8


(b) A =

−3 1 3 4
1 2 −1 −2
−3 8 4 2


(c) A =

 1 3 −2 1
2 1 3 2
3 4 5 6


Exercise 1.8.2. Set

A =

(
1 −3 −3
2 5 −4

)
, v =

 2
−4
7

 .

(a) Is v ∈ Null(A)? Explain.
(b) Describe all vectors that belong to Null(A) as the span of a finite set of vectors.
(c) What is dim[Null(A)]?
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Exercise 1.8.3. Suppose that A ∈M7×8(R). If:

(a) the RREF of A has two zero rows, what is rank(A)?
(b) A has 5 pivot columns, what is dim[Null(A)]?

Exercise 1.8.4. Can a set of eight vectors be a basis for R7? Explain.
Exercise 1.8.5. Can a set of five vectors be a basis for R6? Explain.
Exercise 1.8.6. Is the set

S =

{(
1
5

)
,

(
−2
3

)}
a basis for R2? Explain. If not, find a basis for Span(S), and determine dim[Span(S)].
Exercise 1.8.7. Is the set

S =


 1

5
−2

 ,

−23
0

 ,

 3
1
−5


a basis for R3? Explain. If not, find a basis for Span(S), and determine dim[Span(S)].
Exercise 1.8.8. Is the set

S =


 1

1
3

 ,

−21
4

 ,

4
1
2


a basis for R3? Explain. If not, find a basis for Span(S), and determine dim[Span(S)].
Exercise 1.8.9. Set

A =

 1 2 5
−1 5 2
2 −7 −1

 , b =

 8
13
−17

 .

(a) Find a basis for Col(A).
(b) What is rank(A)?
(c) The vector b ∈ Col(A). Write the vector as a linear combination of the basis vectors

chosen in part (a).

Exercise 1.8.10. Set

A =


1 −3 −2 0
2 −6 1 5
−1 3 3 1
−3 9 1 −5

 , b =


−5
5
8
0

 .

(a) Find a basis for Col(A).
(b) What is rank(A)?
(c) The vector b ∈ Col(A). Write the vector as a linear combination of the basis vectors

chosen in part (a).

Exercise 1.8.11. Determine if each of the following statements is true or false. Provide an ex-
planation for your answer.

(a) If A ∈M7(R) is such that the RREF of A has two zero rows, then rank(A) = 6.
(b) Any set of seven linearly independent vectors is a basis for R7.
(c) If A ∈M4×6(R) is such that the RREF of A has one zero row, then dim[Null(A)] = 4.
(d) If A ∈M9(R) is such that the RREF of A has six pivot columns, dim[Null(A)] = 3.

hw:linind Exercise 1.8.12. Let S = {a1,a2, . . . ,ak} be a set of vectors, and set A = (a1 a2 · · · ak).
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(a) Show that each column of A which is not a pivot column can be written as a linear
combination of the pivot columns (Hint: consider Null(A)).

(b) Prove Lemma 1.8.3.

Exercise 1.8.13. Let {a1,a2, . . . ,ak} ⊂ Rn be a linearly independent set of vectors. Set Sj =
Span{a1,a2, . . . ,aj} for j = 1, 2, . . . , k.

(a) Show that dim[Sj ] = j for each j = 1, 2, . . . , k.
(b) Show that S1 ⊂ S2 ⊂ · · · ⊂ Sk .

hw:subspace2 Exercise 1.8.14. Let S ⊂ Rn be a subspace. Show that S = Span(S), where we define the span
of a subspace to be the set of all finite linear combinations of vectors in S.

hw:subspace1 Exercise 1.8.15. Let {a1,a2, . . . ,ak} ⊂ S, where S ⊂ Rn is a subspace. Show that

Span{a1,a2, . . . ,ak} ⊂ S.

hw:dimsubspace Exercise 1.8.16. Let S1, S2 ⊆ Rn be subspaces with S1 ⊆ S2. Show that dim[S1] ≤ dim[S2].
(Hint: Find a basis for S1 and S2)

1.9 Inner-products and orthogonal bases
s:ip18

In Calculus we introduced the dot product of two vectors in order to compute the angle between
them. We generalize this notion to vectors of any size, and call it an inner-product. Using an
inner-product we show that by taking a special set of vectors for a basis it is straightforward to
write a given vector as a linear combination of the basis vectors. Moreover, we give an algorithm
for constructing such a basis.

1.9.1 The inner-product on Rn

The dot product of two vectors x ,y ∈ R3 is given by

x · y =

3∑
j=1

xjyj = x1y1 + x2y2 + x3y3.

The natural generalization to vectors in Rn is:

Inner-product

def:innerproduct Definition 1.9.1. An inner-product on Rn is given by

〈x ,y〉 =
n∑
j=1

xjyj = x1y1 + x2y2 + · · ·+ xnyn.

The inner-product of two vectors has the same properties as the dot product:

(a) 〈x ,y〉 = 〈y ,x 〉
(b) 〈x ,x 〉 ≥ 0 with equality if and only if x = 0
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(c) 〈x + y , z 〉 = 〈x , z 〉+ 〈y , z 〉
(d) 〈cx ,y〉 = 〈x , cy〉 = c〈x ,y〉 for any c ∈ R

The proof of these properties is left as an exercise in Exercise 1.9.1. Properties (c) and (d) guar-
antee that the inner product is a linear operation (see Exercise 1.9.2). Property (b) allows us to
define the length (magnitude) of a vector by

‖x‖2 := 〈x ,x 〉.

The length has the properties

(a) ‖cx‖ = |c| ‖x‖ for any c ∈ R
(b) ‖x + y‖ ≤ ‖x‖+ ‖y | (the triangle inequality)

(see Exercise 1.9.3). A unit vector has length one,

〈x ,x 〉 = ‖x‖2 = 1.

If x is a nonzero vector, then u = x/‖x‖ is a unit vector which points in the same direction as
x (see Exercise 1.9.4).

x

y

x-y

θ

Fig. 1.3 (color online) A cartoon for the relationship between the vectors x , y , and x − y . f:VectorAngle

C Example 1.9.2. If

x =

 1
2
3

 , y =

 0
−1
4

 , z =

 2
1
5

 ,

then
〈x ,y〉 = 10, 〈x , z 〉 = 19, 〈y , z 〉 = 19.

Using linearity,
〈2x − 3y , z 〉 = 2〈x ,x 〉 − 3〈y , z 〉 = 20− 57 = −37.

Since 〈x ,x 〉 = 14, a unit vector pointing in the same direction as x is

u =
1√
14

x =

 1/
√
14

2/
√
14

3/
√
14

 .

As is the case with the dot product, the inner-product can be used to determine the angle
between two vectors (see Figure 1.3). We start by using linearity to say
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〈x − y ,x − y〉 = 〈x ,x 〉 − 〈y ,x 〉 − 〈x ,y〉+ 〈y ,y〉
= 〈x ,x 〉 − 2〈x ,y〉+ 〈y ,y〉.

The second line follows from property (a). Using the definition of a length of a vector we can
rewrite the above as

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2〈x ,y〉.

Now, if we think of the three vectors x ,y ,x −y as forming three legs of a triangle, then by the
law of cosines we have

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖ ‖y‖ cos θ,

where θ is the angle between x and y . Comparing the two equations reveals:

Bessel’s inequality

prop:vecangle Proposition 1.9.3. The angle between two vectors x ,y ∈ Rn is determined by

〈x ,y〉 = ‖x‖ ‖y‖ cos θ.

In particular, we have Bessel’s inequality,

|〈x ,y〉| ≤ ‖x‖ ‖y‖.

Proof. Bessel’s inequality follows immediately from the first equality upon noting | cos θ| ≤
1. ut

If the inner-product between two vectors is zero, we say:

Orthogonal

def:orthogonal Definition 1.9.4. The two vectors x ,y ∈ Rn are orthogonal (perpendicular) if

〈x ,y〉 = 0.

1.9.2 Orthonormal bases

Consider a collection of nonzero vectors {a1,a2, . . . ,ak}, and suppose that the vectors are
mutually orthogonal,

〈a i,aj〉 = 0, i 6= j.

We first show that the vectors must be linearly independent. Going back to the original Def-
inition 1.4.7, this means that we must show that the only solution to the homogeneous linear
system,

x1a1 + x2a2 + · · ·+ xkak = 0 ,

is x1 = x2 = · · · = xk = 0.
For a given vector y take the inner-product to both sides,
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〈x1a1 + x2a2 + · · ·+ xkak,y〉 = 〈0 ,y〉.

Now use the linearity of the inner-product to rewrite the above as one linear equation,

x1〈a1,y〉+ x2〈a2,y〉+ · · ·+ xk〈ak,y〉 = 0. (1.9.1) e:ip1

This is one linear equation in k variables; however, we have some freedom in choosing the
coefficients by choosing different vectors y .

If we choose y = a1 in (1.9.1), then upon using the fact that the vectors are mutually orthog-
onal the equation reduces to

x1〈a1,a1〉 = 0.

Since the vectors being nonzero implies 〈a1,a1〉 = ‖a1‖2 > 0, we can conclude x1 = 0; thus,
(1.9.1) can be rewritten as

x2〈a2,y〉+ x3〈a3,y〉+ · · ·+ xk〈ak,y〉 = 0. (1.9.2) e:ip2

If we choose y = a2 in (1.9.2), then the mutual orthogonality of the vectors yields the reduced
equation

x2〈a2,a2〉 = 0.

Since all of the vectors are nonzero we conclude x2 = 0. Continuing in this fashion leads to
x3 = x4 = · · · = xk = 0. We conclude:

lem:orthlinind Lemma 1.9.5. Suppose the nonzero vectors {a1,a2, . . . ,ak} are mutually orthogo-
nal,

〈a i,aj〉 = 0, i 6= j.

The set of vectors is then linearly independent.

While a basis for a subspace is not unique, the dimension is fixed. As we will soon see, an
especially useful basis is:

Orthonormal basis
def:orthonormal Definition 1.9.6. The set of vectors {u1,u2, . . . ,uk} forms an orthonormal basis for

a subspace S if

(a) S = Span {u1,u2, . . . ,uk}

(b) 〈u i,uj〉 =

{
0, i 6= j

1, i = j.

In other words, the basis vectors are mutually orthogonal, and each has length one.

C Example 1.9.7. Suppose S = Span{a1,a2,a3}, where

a1 =

 1
2
3

 , a2 =

−30
1

 , a3 =

 1
−5
3

 .

The vectors are clearly mutually orthogonal. Setting
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u1 =
1√
14

a1, u1 =
1√
10

a2, u1 =
1√
35

a3

yields {u1,u2,u3} to be an orthonormal basis for S.

1.9.3 Orthonormal bases and Fourier expansions

We now show that if a basis for a subspace is an orthonormal set of vectors, then it is
straightforward to compute the weights associated with any vector which is some linear
combination of the orthonormal vectors. Suppose that S = Span {u1,u2, . . . ,uk}, where
B = {u1,u2, . . . ,uk} is an orthonormal set of vectors. By Lemma 1.9.5 the set of vectors
is linearly independent, so B is a basis for S. If we originally had S = Span {a1,a2, . . . ,a`}
for some ` ≥ k, then we know that we can derive the basis B by using the Gram-Schmidt
procedure described in the upcoming Lemma 1.9.11.

Now suppose that b ∈ S. There then exist weights x1, x2, . . . , xk such that

b = x1u1 + x2u2 + · · ·+ xkuk.

The weights are typically found by solving the linear system

b = Ax , A = (u1 u2 . . . un).

Since the basisB is an orthonormal set of vectors, we have a relatively straightforward solution
to this system. Moreover, there is a relationship between the length of b and the size of the
weights. As a consequence of the formulation of the solution, and the subsequent relationship
to Fourier series (which is not at all obvious at this point in time), we will call the weights
the Fourier coefficients, and we will call the representation in terms of eigenvectors a Fourier
expansion.

lem:fourierexp Lemma 1.9.8. Let S = Span {u1,u2, . . . ,uk}, where B = {u1,u2, . . . ,uk} is an
orthonormal set of vectors. If b ∈ S, then there is the Fourier expansion

b = 〈b,u1〉u1 + 〈b,u2〉u2 + · · ·+ 〈b,uk〉uk,

and the Fourier coefficients are 〈b,uj〉 for j = 1, . . . , k. Moreover, we have a version
of Parseval’s equality,

〈b, b〉 = 〈b,u1〉2 + 〈b,u2〉2 + · · ·+ 〈b,uk〉2.

Proof. In order to prove the expansion result we use the same trick as in the proof of
Lemma 1.9.5. Since b ∈ S, we have the linear system

b = x1u1 + x2u2 + · · ·+ xkuk.

Upon choosing a vector y , taking the inner-product of both sides with respect to this vector,
and using the linearity of the inner-product, we can collapse the system to the single linear
equation,

〈b,y〉 = x1〈u1,y〉+ x2〈u2,y〉+ · · ·+ xk〈uk,y〉.
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If we take y = u1, then upon using the fact that the vectors are orthonormal,

〈u i,uj〉 =

{
0, i 6= j

1, i = j,

the equation becomes
〈b,u1〉 = x1 · 1.

If we take y = u2, then the equation becomes

〈b,u2〉 = x2 · 1.

Continuing in this fashion leads to the desired result,

xj = 〈b,uj〉, j = 1, . . . , k.

Regarding Parseval’s equality, this follows immediately upon taking the inner product of
both sides of the Fourier expansion with b , and using the linearity of the inner product. The
details are left for the interested student (see Exercise 1.9.5). ut

ex:gs1 C Example 1.9.9. Suppose S = Span {u1,u2}, where

u1 =
1√
14

 1
2
3

 , u2 =
1√
13

 0
3
−2

 .

It is easy to check that {u1,u2} is an orthonormal basis for S. Now suppose

b =

 1
8
−1

 ∈ S.
The Fourier expansion for b is

b = 〈b,u1〉u1 + 〈b,u2〉u2.

The Fourier coefficients are

〈b,u1〉 =
14√
14

=
√
14, 〈b,u2〉 =

26√
13

= 2
√
13,

so
b =
√
14u1 + 2

√
13u2.

By Parseval’s equality the square of the length of b is the sum of the square of the Fourier
coefficients,

‖b‖2 = 〈b, b〉 = (
√
14)2 + (2

√
13)2 = 66.

1.9.4 The Gram-Schmidt procedure

Writing a given vector through a Fourier expansion requires that the basis be orthonormal. We
now consider the problem of finding such a basis for a given subspace S. First, suppose that



1.9 Inner-products and orthogonal bases 67

S = Span {a1,a2}, where a1 and a2 are linearly independent. We wish to find vectors u1

and u2 such that:

(a) S = Span {u1,u2}
(b) the set {u1,u2} is orthonormal.

We start by setting
u1 =

1

‖a1‖
a1,

which is a unit vector pointing in the same direction as a1. Consequently, we can write S =
Span {u1,a2}. In order to satisfy property (a) we first consider a vector, w2, which is a linear
combination of u1 and a2,

w2 = a2 + c1u1.

It is the case that S = Span {u1,w2}. Requiring this new vector to be orthogonal to u1 means

0 = 〈w2,u1〉 = 〈a2,u1〉+ c1〈u1,u1〉.

Since u1 is a unit vector, we have

0 = 〈a2,u1〉+ c1  c1 = −〈a2,u1〉.

The vector
w2 = a2 − 〈a2,u1〉u1

is orthogonal to u1. Upon normalizing the vector w2 (scaling it to have length one) we have
S = Span {u1,u2}, where

u1 =
a1

‖a1‖

u2 =
a2 − 〈a2,u1〉u1

‖a2 − 〈a2,u1〉u1‖
.

(1.9.3) e:ip3

By Lemma 1.9.5 the set {u1,u2} is linearly independent; consequently, they form an orthonor-
mal basis for S.

ex:184 C Example 1.9.10. Suppose that S = Span {a1,a2}, where

a1 =

 1
2
3

 , a2 =

2
7
4

 .

Since ‖a1‖2 = 〈a1,a1〉 = 14, we see from (1.9.3) that the first unit vector is

u1 =
1√
14

1
2
3

 .

Now consider the second vector. Since

〈a2,u1〉u1 =
1

14
〈a2,a1〉a1 = 2a1,

we have
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w2 = a2 − 2a1 =

 0
3
−2

 .

The second unit vector is

u2 =
w2

‖w2‖
=

1√
13

 0
3
−2

 .

The set {u1,u2} is an orthonormal basis for S.
Now suppose that S = Span {a1,a2,a3}, where the set of vectors is linearly independent.

We wish to find vectors u1,u2,u3 such that:

(a) S = Span {u1,u2,u3}
(b) the set {u1,u2,u3} is orthonormal.

We have Span {a1,a2} = Span {u1,u2}, where the orthonormal vectors u1 and u2 are given
in (1.9.3). Thus, all that is needed is to find the third vector u3. We start with a vector that is a
linear combination of u1,u2,a3,

w3 = a3 + c1u1 + c2u2,

so Span {a1,a2,a3} = Span {u1,u2,w3}. We want w3 to be orthogonal to both u1 and u2.
Requiring that this vector be orthogonal to u1 means

0 = 〈w3,u1〉 = 〈a3,u1〉+ c1〈u1,u1〉+ c2〈u2,u1〉.

Since {u1,u2} is an orthonormal set,

〈u1,u1〉 = 1, 〈u2,u1〉 = 0,

and the above equation collapses to

0 = 〈a3,u1〉+ c1  c1 = −〈a3,u1〉.

Requiring that 〈w3,u2〉 = 0 and following the same argument gives

c2 = −〈a3,u2〉.

The vector
w3 = a3 − 〈a3,u1〉u1 − 〈a3,u2〉u2

is then orthogonal to both u1 and u2. The desired orthonormal set comes upon normalizing
w3,

u3 =
a3 − 〈a3,u1〉u1 − 〈a3,u2〉u2

‖a3 − 〈a3,u1〉u1 − 〈a3,u2〉u2‖
.

We can clearly continue this process, which is known as the Gram-Schmidt procedure, for
any finite collection of vectors. Doing so yields the following algorithm:
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Gram-Schmidt procedure

l:gramschmidt Lemma 1.9.11. Let S = Span {a1,a2, . . . ,ak}. An orthonormal basis for S is found
through the algorithm:

u1 =
a1

‖a1‖

u2 =
a2 − 〈a2,u1〉u1

‖a2 − 〈a2,u1〉u1‖

u3 =
a3 − 〈a3,u1〉u1 − 〈a3,u2〉u2

‖a3 − 〈a3,u1〉u1 − 〈a3,u2〉u2‖
...

uk =
ak −

∑k
j=1〈ak,uj〉uj

‖ak −
∑k
j=1〈ak,uj〉uj‖

.

C Example 1.9.12. Suppose S = Span {a1,a2,a3}, where

a1 =


1
0
1
0

 , a2 =


0
1
2
0

 , a3 =


1
0
0
−1

 .

Let us use the Gram-Schmidt procedure to find an orthonormal basis for S. Since 〈a1,a1〉 = 2,
the first unit vector is

u1 =
1√
2
a1 =


1/
√
2

0

1/
√
2

0

 .

As for the second vector,
〈a2,u1〉u1 =

1

2
〈a2,a1〉a1 = a1,

so

w2 = a2 − a1 =


−1
1
1
0

 .

The second unit vector is

u2 =
w2

‖w2‖
=


−1/
√
3

1/
√
3

1/
√
3

0

 .

Finally, for the third vector,

〈a3,u1〉u1 =
1

2
〈a3,a1〉a1 =

1

2
a1, 〈a3,u2〉u2 =

1

3
〈a3,w2〉w2 = −1

3
w2,

so
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w3 = a3 −
1

2
a1 +

1

3
w2 =


1/6
1/3
−1/6
−1

 .

The third unit vector is

u3 =
w3

‖w3‖
=


1/
√
42

2/
√
42

−1/
√
42

−6/
√
42

 .

An orthonormal basis for S is {u1,u2,u3}.
The Gram-Schmidt procedure does not require that we start with a collection of linearly

independent vectors. If the set is linearly dependent, then applying the algorithm will still lead
to an orthonormal set of vectors which serve as a basis. All that happens is the total number
of vectors is reduced. For example, if we start with 5 vectors, but only 3 of them are linearly
independent, then the Gram-Schmidt procedure will lead to a set of 3 orthonormal vectors. The
set of orthonormal vectors will be a basis for the span of the original set of 5 vectors.
C Example 1.9.13. Let us consider a variant of Example 1.9.10. Suppose thatS = Span {a1,a2,a3},
where

a1 =

 1
2
3

 , a2 =

 2
7
4

 , a3 =

 1
8
−1

 .

We have already seen Span {a1,a2} = Span {u1,u2}, where

u1 =
1√
14

 1
2
3

 , u2 =
1√
13

 0
3
−2

 .

For the third vector we start with

w3 = a3 − 〈a3,u1〉u1 − 〈a3,u2〉u2.

Since

〈a3,u1〉u1 =

1
2
3

 , 〈a3,u2〉u2 = 2

 0
3
−2

 ,

we have

w3 =

 1
8
−1

−
1

2
3

− 2

 0
3
−2

 =

0
0
0

 .

Consequently, there is no third vector in S which is perpendicular to the first two, so S =
Span {u1,u2}. The reason w3 = 0 is that the vector a3 is a linear combination of the first
two, a3 = −3a1 + 2a2 (see Example 1.9.9). Consequently, dim[S] = 2, so there can be only
two basis vectors.
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1.9.5 Fourier expansions with trigonometric functions

While we have defined an inner-product only for vectors in Rn, the idea can be used in a
much more general way. For a concrete example, consider the space of continuous 2π-periodic
real-valued functions,

C0
per := {f : f(x+ 2π) = f(x), f(x) is continuous} . (1.9.4) e:cper

It can be shown that C0
per is a vector space (see Exercise 1.9.13). Functions in this space include

cos(x), sin(3x) and cos4(3x) sin2(5x). The space is important when considering solutions to
partial differential equations (see Asmar [4], Haberman [22]), in signal processing (see Oppen-
heim et al. [36]), and in many other applications.

We define an inner-product on C0
per by

〈f, g〉 =
∫ 2π

0

f(x)g(x) dx.

It is straightforward to show that this inner-product has the same properties as that of the
inner-product on Rn (see Exercise 1.9.14). We defined the length of vectors in Rn through the
inner-product on Rn; hence, we can do the same on the space C0

per,

‖f‖2 := 〈f, f〉.

Because the length is defined via the inner-product, it will again have the properties

(a) ‖cf‖ = |c| ‖f‖ for any c ∈ R
(b) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (the triangle inequality)

(see Exercise 1.9.15).
If we have an orthonormal set of functions, then the Fourier expansion result of Lemma 1.9.8

still holds, as this result only depends upon the fact that the set of basis vectors is orthonormal
under some inner-product. A standard set of orthonormal functions on C0

per is given by BN :=
Bc
N ∪Bs

N , where

Bc
N :=

{
1√
2π
,

1√
π
cos(x),

1√
π
cos(2x), . . . ,

1√
π
cos(Nx)

}
Bs
N :=

{
1√
π
sin(x),

1√
π
sin(2x), . . . ,

1√
π
sin(Nx)

} (1.9.5) e:defbn

(see Exercise 1.9.16). Here N ≥ 1 is an arbitrary integer. The set BN is a basis for a subspace
of C0

per, and a basis for the full space is achieved upon letting N → +∞; in other words,
dim[C0

per] = ∞! The verification that one can indeed take the limit is beyond the scope of
this text; however, it can be found in Haberman [22]. If f ∈ Span {BN}, then it will have the
expansion

f(x) =
1

2π
〈f, 1〉+ 1

π

N∑
j=1

〈f, cos(jx)〉+ 1

π

N∑
j=1

〈f, sin(jx)〉. (1.9.6) e:fexp1

The form of the individual terms follows from some algebraic manipulation, e.g.,

〈f, 1√
π
cos(jx)〉 1√

π
cos(jx)〉 = 1

π
〈f, cos(jx)〉.
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The term
f :=

1

2π
〈f, 1〉 = 1

2π

∫ 2π

0

f(x) dx

is the average (mean) of the function f(x).
C Example 1.9.14. Let us find the Fourier expansion in B4 for f(x) = sin(x) sin(2x). Since
f(x) is an even function, it will be the case that

〈f, sin(jx)〉 = 0, j = 1, . . . , 4.

A sequence of calculations using WolframAlpha reveals

〈f, 1〉 = 〈f, cos(2x)〉 = 〈f, cos(4x)〉 = 0,

and
〈f, cos(x)〉 = π

2
, 〈f, cos(3x)〉 = −π

2
.

Using the expansion in (1.9.6) with N = 4 gives the trigonometric identity

sin(x) sin(2x) = f(x) =
1

2
cos(x)− 1

2
cos(3x).

Fourier expansions using trigonometric functions have great utility in a wide variety of ap-
plications. For example, in the context of signal processing suppose there is a periodic signal.
Further suppose that this signal is represented by the function f(θ), and the periodicity implies
f(θ) = f(θ + 2π). If the signal is continuous, then it can be represented through the Fourier
series,

f(θ) = f +

∞∑
j=1

aj cos(jθ) +

∞∑
j=1

bj sin(jθ).

The series representation is found by taking the limit N → +∞ in (1.9.6). The Fourier coeffi-
cients are given by

f =
1

2π

∫ 2π

0

f(θ) dθ, aj =
1

π

∫ 2π

0

f(θ) cos(jθ) dθ, bj =
1

π

∫ 2π

0

f(θ) sin(jθ) dθ.

Via this series representation we can then think of the signal as the linear superposition of an
infinite number of base frequencies.

When studying the signal it is often advantageous to consider the behavior of the Fourier
coefficients, as it is not unusual for it to be the case that only a small number of the coefficients
are not very small. If this is the case, then we can approximate the signal to good accuracy with
the superposition of a relatively small number of frequencies. For example, suppose that for a
given signal it is the case that |aj | ≤ 10−6 for all j, and further suppose that the same upper
bound holds for all the bj ’s except when j = 1, 4. A good approximate representation of the
signal would then be

f(θ) ∼ f + b1 sin(θ) + b4 sin(4θ).

The interested reader can consult Haberman [22] for more information, especially in the context
of using Fourier series to solve partial differential equations.

Exercises

hw:ip1 Exercise 1.9.1. For the inner-product as defined in Definition 1.9.1 show that:

http://www.wolframalpha.com/
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(a) 〈x ,y〉 = 〈y ,x 〉
(b) 〈x ,x 〉 ≥ 0 with equality if and only if x = 0
(c) 〈x + y , z 〉 = 〈x , z 〉+ 〈y , z 〉
(d) 〈cx ,y〉 = 〈x , cy〉 = c〈x ,y〉 for any c ∈ R.

hw:ip1a Exercise 1.9.2. Show that the inner-product as defined in Definition 1.9.1 has the property of
linearity,

〈ax + by , z 〉 = a〈x , z 〉+ b〈y , z 〉.

hw:ip2 Exercise 1.9.3. The length of vectors in Rn is defined as

‖x‖2 := 〈x ,x 〉.

Show that:
(a) ‖cx‖ = |c| ‖x‖ for any c ∈ R
(b) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (Hint: use Bessel’s inequality)

hw:ip2a Exercise 1.9.4. If x ∈ Rn is a nonzero vector, show that

u =
1

‖x‖
x

is a unit vector.
hw:parseval1 Exercise 1.9.5. Prove Parseval’s equality in Lemma 1.9.8 when:

(a) k = 2
(b) k = 3
(c) k ≥ 4 (Hint: use an induction argument).

Exercise 1.9.6. Find the angle between the following vectors:

(a)
(

1
−1

)
,

(
−2
3

)
(b)

 2
2
3

 ,

 1
−4
7


(c)


1
2
4
−1

 ,


−3
1
4
5


Exercise 1.9.7. Find an orthonormal basis for S = Span {a1,a2}, where

a1 =


1
−1
4
7

 , a2 =


−2
3
−1
5

 .

Exercise 1.9.8. Find an orthonormal basis for S = Span {a1,a2,a3}, where

a1 =


1
2
3
0
2

 , a2 =


4
5
1
1
0

 , a3 =


1
−2
0
1
3

 .



74 1 Essentials of Linear Algebra

Exercise 1.9.9. Find an orthonormal basis for S = Span {a1,a2,a3}, where

a1 =

 1
2
3

 , a2 =

 4
5
6

 , a3 =

7
8
9

 .

Exercise 1.9.10. Let

u1 =
1√
2

1
0
1

 , u2 =
1√
6

 1
2
−1

 , u3 =
1√
3

 1
−1
−1

 , b =

 4
−3
5

 .

(a) Show that {u1,u2,u3} is an orthonormal basis for R3.
(b) Find the Fourier coefficients associated with the vector b .
(c) Find the Fourier expansion for the vector b in terms of the given basis vectors.
(d) Use Parseval’s equality to find the length of b .

Exercise 1.9.11. Let

u1 =
1√
6


1
0
1
2

 , u2 =
1√
5


0
0
2
−1

 , u3 =
1√
31


−5
1
1
2

 , b =


7
−1
7
−1

 .

(a) Show that {u1,u2,u3} is an orthonormal set of vectors.
(b) Find the Fourier coefficients associated with the vector b .
(c) Find the Fourier expansion for the vector b in terms of the given vectors.
(d) Use Parseval’s equality to find the length of b .

hw:orthproj Exercise 1.9.12. Let {u1,u2, . . . ,uk} be an orthonormal set of vectors, and set

proj(x ) = 〈x ,u1〉u1 + 〈x ,u2〉u2 + · · ·+ 〈x ,uk〉uk.

The vector proj(x ) is known as the orthogonal projection of x onto the subspace S =
Span{u1,u2, . . . ,uk}. Set r = x − proj(x ). The vector r is known as the residual. Show
that:

(a) 〈r , s〉 = 0 for any s ∈ S
(b) proj[proj(x )] = proj(x )
(c) if x ∈ S, then proj(x ) = x
(d) if x ∈ S, then r = 0 .

hw:cper Exercise 1.9.13. Show that the space of continuous 2π-periodic functions, C0
per, as defined in

(1.9.4) is a vector space under the definition given in Chapter 1.7.
hw:cper2 Exercise 1.9.14. Show that the inner-product on the space C0

per defined by

〈f, g〉 =
∫ 2π

0

f(x)g(x) dx

has the properties:

(a) 〈f, g〉 = 〈g, f〉
(b) 〈f, f〉 ≥ 0 with equality if and only if f(x) ≡ 0
(c) 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉
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(d) 〈cf, g〉 = 〈f, cg〉 = c〈f, g〉 for any c ∈ R.
hw:cper3 Exercise 1.9.15. The length of a function in C0

per is defined by

‖f‖2 = 〈f, f〉.

Show that:
(a) ‖cf‖ = |c| ‖f‖ for any c ∈ R
(b) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (the triangle inequality).

hw:cper4 Exercise 1.9.16. Consider the inner-product on the space C0
per defined by

〈f, g〉 =
∫ 2π

0

f(x)g(x) dx.

Show that for any integers j, k ≥ 1:

(a)
〈

1√
2π
,

1√
2π

〉
= 1

(b)
〈

1√
2π
,

1√
π
cos(jx)

〉
= 0

(c)
〈

1√
2π
,

1√
π
sin(jx)

〉
= 0

(d)
〈

1√
π
cos(jx),

1√
π
cos(kx)

〉
=

{
0, j 6= k

1, j = k

(e)
〈

1√
π
sin(jx),

1√
π
sin(kx)

〉
=

{
0, j 6= k

1, j = k

(f)
〈

1√
π
sin(jx),

1√
π
cos(kx)

〉
= 0.

Exercise 1.9.17. Find Fourier expansions for the following products of trigonometric functions
using the basis B3, which is defined in (1.9.5):

(a) sin(x) cos(2x)
(b) sin(x) sin(2x)
(c) cos(x) cos(2x)

Exercise 1.9.18. Find Fourier expansions for the following products of trigonometric functions
using the basis B5, which is defined in (1.9.5):

(a) sin(x) sin(2x) cos(2x)
(b) cos(x) sin(2x) cos(2x)
(c) sin(x) cos(x) sin(3x)
(d) cos(2x) cos(3x)
(e) sin(2x) cos(3x)
(f) sin(2x) sin(3x)

1.10 The matrix transpose, and two more subspaces

We now consider the transpose, AT, of matrix A. Writing A = (aij) ∈ Mm×n(R) for i =
1, . . . ,m and j = 1, . . . , n, we have AT = (aji) ∈Mn×m(R). In other words, each column of
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A is a row of AT. For example,−13
2

T

= (−1 3 2) ⇔ (−1 3 2)T =

−13
2

 ,

and (
−1 3 2
2 −5 8

)T

=

−1 2
3 −5
2 8

 ⇔

−1 2
3 −5
2 8

T

=

(
−1 3 2
2 −5 8

)
.

The matrix transpose has the following properties (see Exercise 1.10.2):

(a) (AT)T = A
(b) (cA)T = cAT for any constant c ∈ R
(c) (A+B)T = AT +BT

(d) (AB)T = BTAT.

In our discussion of subspaces in Definition 1.5.1 and Definition 1.7.6 we considered two
subspaces associated with a matrix: the null space, and the column space. The matrix AT will
also have these two subspaces:

Null(AT) =
{
x : ATx = 0

}
, Col(AT) =

{
b : ATx = b is consistent

}
.

In the above note that while Ax is a linear combination of the columns of A, ATx is a linear
combination of the rows of A. Since the columns of AT are the rows of A, the space Col(AT)
is sometimes called the row space of A, and is the set of all linear combinations of the rows of
A. Moreover, since as a consequence of Exercise 1.10.2(d),

ATx = 0  (Ax )
T
= 0T  xTA = 0T,

the null space of AT is sometimes called the left nullspace of A.

1.10.1 Subspace relationships

These four subspaces, Col(A), Null(A), Col(AT), Null(AT), are related both geometrically
and through dimension. First note that for A ∈Mm×n(R),

Col(A),Null(AT) ⊂ Rm, Null(A),Col(AT) ⊂ Rn.

Since they are subspaces of the same vector space, it is possible that there is some relationship
between Col(A) and Null(AT), and Col(AT) and Null(A). We have:

l:orthspace Lemma 1.10.1. If A ∈Mm×n(R), then

(a) b ∈ Col(A), x ∈ Null(AT)  〈b,x 〉 = 0
(b) b ∈ Col(AT), x ∈ Null(A)  〈b,x 〉 = 0.
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Proof. We will prove (a) only, and leave the proof of (b) for Exercise 1.10.10. The key to the
proof is the result of Exercise 1.10.9,

〈Ax ,y〉 = 〈x ,ATy〉.

Since b ∈ Col(A), there is a vector x̃ such that Ax̃ = b . Since x ∈ Null(AT), ATx = 0 . We
then have

〈b,x 〉 = 〈Ax̃ ,x 〉 = 〈x̃ ,ATx 〉 = 〈x̃ ,0 〉 = 0. ut

Using the definition of orthogonality provided in Definition 1.9.4, we see that vectors in the
column space of A are orthogonal to vectors in the null space of AT, and vectors in the column
space of AT are orthogonal to vectors in the null space of A. All subspaces of a vector space
share the zero vector. We now show that is all the above subspaces share:

l:spaceint Corollary 1.10.2. If A ∈Mm×n(R), then

(a) Col(A) ∩Null(AT) = {0}
(b) Null(A) ∩ Col(AT) = {0}.

Proof. We will prove (a) only, and leave the proof of (b) for Exercise 1.10.11. Suppose y ∈
Col(A) ∩ Null(AT). By Lemma 1.10.1(a) we then have 〈y ,y〉 = 0. By definition of the inner
product this is possible if and only if y = 0 . In other words, the only vector in both subspaces
is the zero vector. ut

We conclude by observing that if a vector is orthogonal to every vector in the column space
of A, then it must be a vector in the null space of AT.

thm:fredholm Lemma 1.10.3. Suppose A ∈ Mm×n(R). If 〈b,x 〉 = 0 for all b ∈ Col(A), then
x ∈ Null(AT).

Proof. Since b ∈ Col(A), there is a vector x̃ such that Ax̃ = b . We then have

0 = 〈b,x 〉 = 〈Ax̃ ,x 〉 = 〈x̃ ,ATx 〉.

The vector x̃ is arbitrary; consequently, the above calculation shows that the vector ATx ∈ Rn
is orthogonal to any vector in Rn. Applying the result of Exercise 1.10.12 implies that ATx is
the zero vector, so ATx = 0 . In other words, x ∈ Null(AT). ut

We conclude by showing that even though Col(A) and Col(AT) are subspaces of different
vector spaces (assuming m 6= n), they are related through their dimension.

l:rank Lemma 1.10.4. If A ∈Mm×n(R), then

rank(A) = rank(AT).

Proof. Recall that:

(a) row reduction of a matrix is comprised of replacing rows with linear combinations of
rows; in particular, zero rows are formed by taking linear combinations of the rows
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(b) the pivot columns of A form a basis for Col(A) (see Lemma 1.8.3)
(c) every column of A which is not a pivot column can be written as a linear combination

of the pivot columns (see Exercise 1.8.12(a)). Another proof is in
[34, Chapter 4].Consider the matrix AT. Each row of AT is a column of A. Because of (a) and (c) all rows of

AT which do not correspond to pivot columns will eventually become zero rows in the RREF of
AT. Moreover, because no linear combination of basis vectors leads to a zero vector, we can use
(b) to state that rank(A) of the rows in the RREF of AT will not be a zero row. Consequently,
after the row reduction there will be precisely rank(A) leading entries for the RREF of AT.
This in turn implies there will be rank(A) pivot columns for AT. Since the rank of a matrix is
the dimension of the column space, the proof is complete. ut

c:rank Corollary 1.10.5. If A ∈Mm×n(R), then

(a) rank(A) + dim[Null(A)] = n
(b) rank(A) + dim[Null(AT)] = m.

Proof. We know from Lemma 1.8.10 the sum of the rank of a matrix and the dimension of the
null space is the number of columns. Statement (b) follows immediately from Lemma 1.10.4
and the fact that AT has m columns. ut

C Example 1.10.6. Consider the matrix

A =

(
1 2 3
4 5 6

)
 AT =

 1 4
2 5
3 6

 .

We have

A
RREF−→

(
1 0 −1
0 1 2

)
, AT RREF−→

 1 0
0 1
0 0

 .

As expected from Lemma 1.10.4, each matrix has the same number of pivot columns, and
rank(A) = rank(AT) = 2. Using the pivot columns as a basis,

Col(A) = Span

{(
1
4

)
,

(
2
5

)}
, Col(AT) = Span


 1

2
3

 ,

 4
5
6

 .

As for the null spaces,

Null(A) = Span


 1
−2
1

 , Null(AT) = {0}.

We have the expected result,

rank(A) + dim[Null(A)] = 3, rank(A) + dim[Null(AT)] = 2.
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1.10.2 Least squares

The transpose of a coefficient matrix to can be used to “solve” an inconsistent linear system.
Start with an overdetermined and inconsistent linear system,

Ax = b, A ∈Mm×n(R) (n ≤ m).

Such a system will arise, for example, in the context of data fitting. Suppose there are n points,
(x1, y1), (x2, y2), . . . , (xn, yn), and further suppose that each point is thought to lie - but ac-
tually does not - on a line of the form y = a1 + a2x for some constants a1 and a2. This implies
the existence of a linear system,

a1 + a2x1 = y1

a1 + a2x2 = y2

...
a1 + a2xn = yn,

which in matrix/vector form is

Aa = y ; A =


1 x1
1 x2
...

...
1 xn

 , a =

(
a1
a2

)
, y =


y1
y2
...
yn

 .

As long as xj 6= xk for j 6= k, the matrix A will be of full rank, i.e., rank(A) = 2. It is clear
that this overdetermined system will in general be inconsistent, as it is too much to expect that
each data point lies on the same line.

AxAxLS

b

Ax−bAxLS−b

Col(A)

Fig. 1.4 (color online) A cartoon showing the relationship of the vector b with Col(A). Note the residual
vectors Ax − b for arbitrary x , and AxLS − b for the least-squares solution xLS. f:LeastSquares

Going back to the original system, assume that the matrix has full rank, rank(A) = n. For
any x ∈ Rm we have Ax ∈ Col(A). Since the system is inconsistent, b /∈ Col(A). We wish to
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choose a vector, say xLS, such that the residual, AxLS − b , is as small as possible, i.e., for any The length of a
vector z ∈ Rn is
‖z‖ =√
z21 + · · ·+ z2n.

x ∈ Rm,
‖AxLS − b‖ ≤ ‖Ax − b‖

(see Exercise 1.9.12 for another context in which a residual vector appears). Intuitively, this
means the residual should be orthogonal to every vector in Col(A) (see Figure 1.4). As a conse-
quence of Lemma 1.10.3) the residual must then be a vector in the null space of AT, AxLS−b ∈
Null(AT) (also see Meyer [34, Chapter 5]). In other words,

AT (AxLS − b) = 0 ,

which can be rewritten (
ATA

)
xLS = ATb. (1.10.1) e:normaleq

The new linear system (1.10.1) is known as the normal equations. The coefficient matrix
ATA ∈Mn(R) is square. It turns out to be the case that A having full rank implies ATA has
full rank (see Exercise 1.10.3). Consequently, the normal equations are consistent and have a
unique solution (recall Theorem 1.8.13). These solutions are known as least-squares solutions.
The least-squares solution, xLS, provides:

(a) the vector in Col(A), AxLS, which is closest to b
(b) the solution to the original system, if the original system is consistent.

x

y

1

6

5

4

3

2

1

432

Fig. 1.5 (color online) The data points for Example 1.10.7, as well as a plot of the line of best fit,
y = 3/2 + 11x/10. f:DataFit

ex:datafit C Example 1.10.7. Consider fitting a line to the data

(1, 2), (2, 4), (3, 6), (4, 5)

(see Figure 1.5). Writing y = a0 + a1x yields the system of inconsistent equations,
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1 1
1 2
1 3
1 4


︸ ︷︷ ︸

A

a =


2
4
6
5


︸ ︷︷ ︸
b

, a =

(
a0
a1

)
.

It is clear that rank(A) = 2, so the matrix has full rank and the normal equations will have a
unique solution. The normal equations are(

4 10
10 30

)
a = ATAa = ATb =

(
17
48

)
 a =

(
3/2

11/10

)
.

The line of best fit is
y =

3

2
+

11

10
x.

Exercises

Exercise 1.10.1. Let

A =

(
1 −2 −5
−2 3 −7

)
, B =

 2 0
−2 3
1 5

 , C =

 1 2
5 −4
3 −1

 .

Compute the prescribed algebraic operation if it is well-defined. If it cannot be done, explain
why.

(a) 2AT + 3B
(b) A− 2CT

(c) CTA
(d) BCT

(e) (BA)T

(f) (2A−BT)T

ex:182 Exercise 1.10.2. Let A,B ∈ Mm×n(R). Regarding properties of the transpose of a matrix,
show that:

(a) (AT)T = A.
(b) (cA)T = cAT for any constant c ∈ R.
(c) (A+B)T = AT +BT.
(d) (AB)T = BTAT.

hw:transpose Exercise 1.10.3. Suppose that A ∈Mm×n(R), n ≤ m, has full rank. Show that

rank(ATA) = rank(A) = n.

ex:183 Exercise 1.10.4. Suppose that A ∈Mn(R), and set

B = A+AT, C = A−AT.

(a) Show that B is symmetric, i.e., BT = B (hint: use Exercise 1.10.2).
(b) Show that C is skew-symmetric, i.e., CT = −C (hint: use Exercise 1.10.2).

Exercise 1.10.5. Show that for any A ∈ Mm×n(R) the matrices AAT and ATA are both
symmetric.
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Exercise 1.10.6. Show that if A is skew-symmetric, then all of its diagonal entries must be zero.
Exercise 1.10.7. Show that any A ∈Mn(R) may be written as the sum of a symmetric matrix
and a skew-symmetric matrix (hint: use Exercise 1.10.4).

hw:198inner Exercise 1.10.8. Show that the inner-product as defined in Definition 1.9.1 can also be written
as

〈x ,y〉 = xTy .

hw:adj1 Exercise 1.10.9. Let A ∈ Mm×n(R). Show that 〈Ax ,y〉 = 〈x ,ATy〉. (Hint: Use Exer-
cise 1.10.8 and the fact that (AB)T = BTAT.)

hw:adj2 Exercise 1.10.10. Let A ∈Mm×n(R). If b ∈ Col(AT) and x ∈ Null(A), show that 〈b,x 〉 = 0.
(Hint: Use the definition of Col(A) and Exercise 1.10.9)

hw:adj3 Exercise 1.10.11. If A ∈Mm×n(R), show that Null(A) ∩ Col(AT) = {0}.
hw:adj5 Exercise 1.10.12. Show that if 〈x ,y〉 = 0 for any vector y , then x = 0 . (Hint: consider the

particular case y = x )
Exercise 1.10.13. Determine if each of the following statements is true or false. Provide an
explanation for your answer.

(a) If A,B ∈Mm×n(R) are the same size, then AB and BA are well-defined.
(b) If A,B ∈M5(R), then AB = BA.
(c) If A,B ∈Mn(R) are symmetric, then (AB)T = BA.
(d) If A,B are such that A+B is well-defined, then (A+B)T = AT +BT.

Exercise 1.10.14. Find the line of best fit, y = a0 + a1x, for the data

(−1, 0), (0, 1), (1, 3), (2, 1), (3, 2).

Exercise 1.10.15. Find the quadratic of best fit, y = a0 + a1x+ a2x
2, for the data

(−1, 0), (0, 1), (1, 3), (2, 1), (3, 2).

1.11 Matrix algebra: the inverse of a square matrix
s:matinv

We learned how to do matrix addition/subtraction and multiplication in Chapter 1.3: how about
matrix division? If such a thing exists, then we can (formally) write the solution to linear systems
as

Ax = b  x =
1

A
b.

Unfortunately, as currently written this calculation makes no sense. However, using the analogy
that 1/2 is the unique number such that 1/2 · 2 = 1, we could define 1/A to be that matrix
such that 1/A ·A = I n. It is not clear that for a given matrix A the corresponding matrix 1/A
must exist. For an analogy, there is no number c ∈ R such that c · 0 = 1. Moreover, even if 1/A
does exist, it is not at all clear as to how it should be computed.

When solving the linear system as above, we are implicitly assuming that

(a) a solution exists for any b
(b) the solution is unique.

As we saw in Chapter 1.6.4, these two conditions can be satisfied only if the matrix is square.
Consequently, for the rest of the discussion we will consider only square matrices, and we will
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call 1/A the inverse of a square matrix A ∈ Mn(R). If it exists, it will be denoted by A−1

(think 1/2 = 2−1), and it will have the property that

A−1A = AA−1 = I n. (1.11.1) e:191

Assuming that the inverse exists, it allows us to solve the linear system Ax = b via a ma-
trix/vector multiplication; namely,

Ax = b  A−1Ax = A−1b  I nx = A−1b  x = A−1b.

lem:191 Lemma 1.11.1. Consider the linear system Ax = b , where A ∈Mn(R) is invertible,
i.e., A−1 exists. The solution to the linear system is given by

x = A−1b.

How do we compute the inverse? Denote A−1 = (a−11 a−12 · · · a−1n ), and let ej denote the
jth column of I n, i.e., I n = (e1 e2 · · · en). Using (1.11.1),(

e1 e2 · · · en
)
= I n = AA−1 =

(
Aa−11 Aa−12 · · · A−1n

)
.

Equating columns gives Aa−1j = ej for j = 1, . . . , n, so that the jth column of A−1 is the
solution to Ax = ej . From Theorem 1.8.13 if A−1 exists, then the RREF of A is I n. This yields
for the augmented matrix,

(A|ej)
RREF−→ (I n|a−1j ), j = 1, . . . , n. (1.11.2) e:192

We now consider the collection of linear systems (1.11.2) through a different lens. First con-
sider a general collection of linear systems with the same coefficient matrix,

Ax 1 = b1, Ax 2 = b2, . . . Axm = bm.

Using the definition of matrix/matrix multiplication, this collection of linear systems can be
written more compactly as AX = B , where

X = (x 1 x 2 · · · xm) , B = (b1 b2 · · · bm) .

Solving this new system is accomplished by forming the augmented matrix (A|B), and then
row-reducing.

Now, (1.11.2) is equivalent to solving n linear systems,

Ax = ej , j = 1, . . . , n.

Using the above, this collection of linear systems can be written more compactly as

AX = I n.

Forming the augmented matrix (A|I n), we find the inverse of A via

(A|I n)
RREF−→ (I n|A−1).
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lem:192 Lemma 1.11.2. The square matrix A ∈ Mn(R) is invertible if and only if the RREF
of A is I n. The inverse is computed via

(A|I n)
RREF−→ (I n|A−1).

C Example 1.11.3. Suppose that

A =

(
1 2
3 5

)
, b =

(
2
−6

)
.

We have
(A|I 2)

RREF−→
(
1 0 −5 2
0 1 3 −1

)
 A−1 =

(
−5 2
3 −1

)
.

Consequently, the solution to the linear system Ax = b is given by

x = A−1b =

(
−22
12

)
.

C Example 1.11.4. Suppose that

A =

(
1 2
3 6

)
.

We have
(A|I 2)

RREF−→
(
1 2 1 0
0 0 −3 1

)
;

consequently, since the left-hand side of the augmented matrix cannot be row-reduced to
I 2, A

−1 does not exist. Since the RREF of A is

A
RREF−→

(
1 2
0 0

)
,

we have that the first column of A is the only pivot column; hence, by Theorem 1.7.8 and
the fact that the pivot columns form a basis for Col(A) (see Lemma 1.8.10) the linear system
Ax = b is consistent if and only if

b ∈ Col(A) = Span

{(
1
3

)}
.

C Example 1.11.5. We consider an example for which the inverse will be computed by Wol-
framAlpha. Here A ∈M3(R) is given by

A =

 1 2 3
−1 2 −3
5 6 7

 .

We get

http://www.wolframalpha.com/
http://www.wolframalpha.com/
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inverse 881,2,3<,8-1,2,-3<,85,6,7<<

Input:

1 2 3

-1 2 -3

5 6 7

-1

Hmatrix inverseL

Result:

1

8

-8 -1 3

2 2 0

4 -1 -1

Dimensions:

3 HrowsL ´ 3 HcolumnsL

Matrix plot:

1 2 3

1

2

3

1 2 3

1

2

3

Determinant: Step-by-step solution

-
1

32

Trace:

-
7

8

Characteristic polynomial:

-x
3

-
7 x

2

8

+
5 x

16

-
1

32

Eigenvalues: Exact forms

Λ1 » -1.166

Λ2 » 0.145498 + 0.0750423 ä

Λ3 » 0.145498 - 0.0750423 ä

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

In conclusion,

A−1 =
1

8

−8 −1 3
2 2 0
4 −1 −1

 .

We finish by adding to Theorem 1.8.13 one more statement. In that theorem there are three
equivalent statements regarding linear systems with square coefficient matrices. The added
statements follow from Lemma 1.11.2.

cor:163aa Corollary 1.11.6. Consider the linear system Ax = b , where A ∈ Mn(R). The fol-
lowing statements are equivalent:

(a) there is a unique solution for any b
(b) rank(A) = n
(c) dim[Null(A)] = 0
(d) A is invertible
(e) the RREF of A is I n.

Exercises

Exercise 1.11.1. Find the inverse, if it exists, of the following matrices:

(a)
(

3 7
−1 4

)
(b)
(
−2 3
4 −6

)
(c)

 5 0 0
0 6 4
0 −2 −1


Exercise 1.11.2. Use A−1, if it exists, to solve the linear system Ax = b . If A−1 does not exist,
find all solutions to the system if it is consistent.
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(a) A =

(
3 7
−1 4

)
, b =

(
5
−6

)
(b) A =

(
−2 3
4 −6

)
, b =

(
−4
8

)
(c) A =

 5 0 0
0 6 4
0 −2 −1

 , b =

3
1
9


Exercise 1.11.3. Let A =

(
2 −5
3 4

)
, b1 =

(
7
−8

)
, b2 =

(
0
6

)
. Use A−1 to solve the systems

Ax = b1 and Ax = b2.
Exercise 1.11.4. Suppose that A,B ∈Mn(R) are invertible matrices. Show that

(AB)−1 = B−1A−1

(compare your answer with the result of Exercise 1.10.2(d)).

Exercise 1.11.5. Let A =

(
cos θ − sin θ
sin θ cos θ

)
.

(a) Compute A−1 and AT. What do you observe?
(b) What is the angle between v and Av?
(c) How does ‖v‖ compare with ‖Av‖?

Exercise 1.11.6. Determine if each of the following statements is true or false. Provide an ex-
planation for your answer.

(a) If A has a pivot in every row, then the matrix is invertible.
(b) If Ax = b has a unique solution, then A is invertible.
(c) If A,B ∈Mn(R) are invertible, then (AB)−1 = A−1B−1.
(d) If A is a square matrix whose RREF has one zero row, then A is invertible.
(e) If A ∈Mn(R) is invertible, then the columns of A are linearly dependent.
(f) If the RREF of A has no zero rows, then the matrix is invertible.

1.12 The determinant of a square matrix
s:210

We wish to derive a scalar which tells us whether or not a square matrix is invertible. First
suppose that A ∈M2(R) is given by

A =

(
a b
c d

)
.

If we try to compute A−1, we get

(A|I 2)
−cρ1+aρ2−→

(
a b 1 0
0 ad− bc −c a

)
.

If ad − bc 6= 0, then we can continue with the row reduction, and eventually compute A−1;
otherwise, A−1 does not exist. This fact implies that this quantity has special significance for
2× 2 matrices.
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Determinant
def:1101 Definition 1.12.1. Let A ∈M2(R) be given by

A =

(
a b
c d

)
.

The determinant of A, det(A), is given by

det(A) = ad− bc.

We know that the matrix A has the RREF of I 2 if and only if det(A) 6= 0. Continuing with
the row-reductions if det(A) 6= 0 leads to:

lem:1101 Lemma 1.12.2. Suppose that A ∈M2(R) is given by

A =

(
a b
c d

)
.

The matrix is invertible if and only if det(A) 6= 0. Furthermore, if det(A) 6= 0, then
the inverse is given by

A−1 =
1

det(A)

(
d −b
−c a

)
.

Proof. A simple calculation shows that AA−1 = I 2 if det(A) 6= 0. ut

C Example 1.12.3. Suppose that

A =

(
4 7
−3 2

)
.

Since
det(A) = (4)(2)− (7)(−3) = 29,

the inverse of A exists, and it is given by

A−1 =
1

29

(
2 −7
3 4

)
.

By Lemma 1.11.1 the unique solution to the linear system Ax = b is given by x = A−1b .
C Example 1.12.4. Suppose that

A =

(
4 1
8 2

)
.

Since det(A) = 0, the inverse of A does not exist. If there is a solution to Ax = b , it must be
found by putting the augmented matrix (A|b) into RREF, and then solving the resultant system.

We now wish to define the determinant for A ∈ Mn(R) for n ≥ 3. In theory we could
derive it in a manner similar to that for the case n = 2: start with a matrix of a given size,
and then attempt to row-reduce it to the identity. At some point a scalar arises which must be
nonzero in order to ensure that the RREF of the matrix is the identity. This scalar would then
be denoted as the determinant. Instead of going through this derivation, we instead settle on
the final result.
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For A ∈ Mn(R), let Aij ∈ Mn−1(R) denote the submatrix gotten from A after deleting
the ith row and jth column. For example,

A =

1 4 7
2 5 8
3 6 9

 =⇒ A12 =

(
2 8
3 9

)
, A31 =

(
4 7
5 8

)
.

With this notion of submatrix in mind, we note that for 2× 2 matrices the determinant can be
written as

det(A) = a11 det(A11)− a12 det(A12),

where here the determinant of a scalar is simply the scalar. The generalization to larger matrices
is:

Determinant
def:1102 Definition 1.12.5. If A ∈Mn(R), then the determinant of A is given by

det(A) = a11 det(A11)− a12 det(A12) + a13 det(A13) + · · ·+ (−1)n+1a1n det(A1n).

C Example 1.12.6. If

A =

 1 4 7
2 5 8
3 6 9

 ,

then we have
A11 =

(
5 8
6 9

)
, A12 =

(
2 8
3 9

)
, A13 =

(
2 5
3 6

)
.

Since
a11 = 1, a12 = 4, a13 = 7,

the determinant of the matrix is

det(A) = 1 · det(A11)− 4 · det(A12) + 7 · det(A13) = −3 + 24− 21 = 0.

Thus, we know that A−1 does not exist; indeed, the RREF of A is

A
RREF−→

 1 0 −1
0 1 2
0 0 0

 ,

and the columns of A are linearly dependent. Indeed,

Col(A) = Span


 1

2
3

 ,

 4
5
6

 , Null(A) = Span


 1
−2
1

 ,

with rank(A) = 2 and dim[Null(A)] = 1. The columns are related through the linear combi-
nation a1 − 2a2 + a3 = 0 .
C Example 1.12.7. We now calculate the determinant using WolframAlpha for the matrix

http://www.wolframalpha.com/
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A =

 1 2 3
−1 2 −3
5 6 7

 .

We have

det 881,2,3<,8-1,2,-3<,85,6,7<<

Input interpretation:

1 2 3

-1 2 -3

5 6 7

 m¤ is the determinant»

Result: Step-by-step solution

-32

Number name:

negative thirty-two

Number line:

-60 -50 -40 -30 -20 -10

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

In other words, det(A) = −32.
The determinant has many properties, which are too many to detail in full here (e.g., see

Eves [18, Chapter 3] and Vein and Dale [41]). We will consider only a small number that we will
directly need. The first, and perhaps most important, is that the expression of Definition 1.12.1
is not the only way to calculate the determinant. In general, the determinant can be calculated
by going across any row, or down any column; in particular, we have

det(A) =

n∑
j=1

(−1)i+jaij det(Aij)︸ ︷︷ ︸
across ith row

=

n∑
i=1

(−1)i+jaij det(Aij)︸ ︷︷ ︸
down jth column

. (1.12.1) e:1101

For example,

det

 4 3 6
2 0 0
−1 7 −5

 = (6) det

(
2 0
−1 7

)
− (0) det

(
4 3
−1 7

)
+ (−5) det

(
4 3
2 0

)

= −(2) det
(
3 6
7 −5

)
+ (0) det

(
4 6
−1 −5

)
− (0) det

(
4 3
−1 7

)
.

The first line is down the third column, and the second line is across the second row. As the
above example shows, a judicious choice for the expansion of the determinant can greatly
simplify the calculation. In particular, it is generally best to calculate the determinant using the
row or column which has the most zeros. Note that if a matrix has a zero row or column, then
by using the more general definition (1.12.1) and expanding across that zero row or column we
get that det(A) = 0.
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A couple of other properties which may sometimes be useful are as follows. If a matrix B is
formed from A by multiplying a row or column by a constant c, e.g., A = (a1 a2 · · · an) and
B = (ca1 a2 · · · an), then det(B) = cdet(A). In particular, after multiplying each column by
the same constant, i.e., multiplying the entire matrix by a constant, it is then true that det(cA) =
cn det(A) (see Exercise 1.12.5). Another useful property is that

det(AB) = det(A) det(B).

Since I nA = A, we get from this property that

det(A) = det(I n) det(A) = det(I n) det(A)  det(I n) = 1

(this could also be shown by a direct computation). Since AA−1 = I n, this also allows us to
state that

1 = det(I n) = det(AA−1) = det(A) det(A−1)  det(A−1) =
1

det(A)
.

We summarize with:

prop:1108 Proposition 1.12.8. The determinant of matrices A,B ∈Mn(R) has the properties:

(a) det(cA) = cn det(A)
(b) det(AB) = det(A) det(B)
(c) if A is invertible, det(A−1) = 1/ det(A).

The determinant is defined so that it provides us with information regarding the solution
structure to a linear system of equations. We first list all of the implications of a zero determinant
regarding solutions to the linear system Ax = b :

thm:1101 Theorem 1.12.9. Consider the linear system Ax = b , where A ∈ Mn(R). The fol-
lowing are equivalent statements:

(a) det(A) = 0
(b) dim[Null(A)] ≥ 1, i.e., the linear system has free variables
(c) rank(A) ≤ n− 1
(d) the inverse matrix A−1 does not exist
(e) the RREF of A has at least one zero row
(f) if the linear system is consistent, there are an infinite number of solutions.

On the other hand, if the determinant is nonzero, then we have the following addendum to
Corollary 1.11.6:
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thm:1101aa Theorem 1.12.10. Consider the linear system Ax = b , where A ∈ Mn(R). The
following are equivalent:

(g) det(A) 6= 0
(h) dim[Null(A)] = 0
(i) rank(A) = n, i.e., A has full rank
(j) the inverse matrix A−1 exists

(k) the RREF of A is the identity matrix I n
(l) the linear system is consistent, and the unique solution is x = A−1b .

Exercises

Exercise 1.12.1. Compute by hand det(A) for each of the following matrices, and then state
whether or not the matrix is invertible. If the matrix is invertible, compute det(A−1).

(a) A =

(
3 −2
−2 3

)
(b) A =

 1 −3 4
1 2 −1
3 −5 8


(c) A =

 1 2 3
0 4 0
2 8 5


(d) A =


1 2 0 5
2 4 0 6
0 −3 0 5
6 −1 2 4


ex:1103 Exercise 1.12.2. Suppose that A ∈Mn(R).

(a) If n = 2, show that det(AT) = det(A).
(b) If n = 3, show that det(AT) = det(A).
(c) Show that det(AT) = det(A) for any n.

Exercise 1.12.3. Suppose that A,B ∈Mn(R). Show that the matrix product AB is invertible
if and only if both A and B are invertible. (Hint: Use Proposition 1.12.8(b))

hw:diagdet Exercise 1.12.4. Suppose that D = diag(λ1, λ2, . . . , λn) is a diagonal matrix, e.g.,

diag(λ1, λ2) =

(
λ1 0
0 λ2

)
, diag(λ1, λ2, λ3) =

λ1 0 0
0 λ2 0
0 0 λ3

 , etc.

(a) If n = 2, show that det(D) = λ1λ2.
(b) If n = 3, show that det(D) = λ1λ2λ3.
(c) Show that for any n,

det(D) =

n∏
j=1

λj .

hw:2102 Exercise 1.12.5. Here we generalize the result of Proposition 1.12.8(a). For a matrix A =
(a1 a2 a3 · · · an) ∈Mn(R), let B be defined as B = (c1a1 c2a2 c3a3 · · · cnan).
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(a) Show that B = AC , where C = diag(c1, c2, . . . , cn) is a diagonal matrix.
(b) If n = 2, show that det(B) = c1c2 det(A).
(c) Show that for n ≥ 3,

det(B) =

 n∏
j=1

cj

 det(A).

(Hint: Use Proposition 1.12.8(b) and Exercise 1.12.4)
Exercise 1.12.6. Suppose that A ∈Mn(R) is an upper triangular matrix, i.e., all of the entries
below the diagonal are zero.

(a) Show that det(A) is the product of the diagonal entries. Hint: Show that it is true for
n = 2, 3, and then use an induction argument.

(b) Show that AT is a lower triangular matrix, i.e., all of the entries above the diagonal are
zero.

(c) Show that det(AT) is the product of the diagonal entries. Hint: Use the result of Exer-
cise 1.12.2.

Exercise 1.12.7. A matrix V ∈M3(R) is said to be a Vandermonde matrix if

V =

1 a a2

1 b b2

1 c c2

 .

(a) Show that det(V ) = (b− a)(c− a)(c− b).
(b) What conditions must the scalars a, b, c satisfy in order that V be invertible?

Exercise 1.12.8. Suppose that

A(λ) =

(
3− λ −2
−2 3− λ

)
.

For which value(s) of λ does the system A(λ)x = 0 have a nontrivial solution? For one such
value of λ, compute a corresponding nontrivial solution.
Exercise 1.12.9. Suppose that A ∈Mn(R) is such that Ax = 0 has infinitely many solutions.
What can be said about det(A)? Explain.
Exercise 1.12.10. Determine if each of the following statements is true or false. Provide an
explanation for your answer.

(a) If A ∈Mn(R) has a pivot in every row, then det(A) = 0.
(b) If A ∈Mn(R) and Ax = b has a unique solution for any b , then det(A) = 0.
(c) If A ∈Mn(R) is a diagonal matrix, then det(A) is the product of the diagonal entries.
(d) If the RREF of A ∈Mn(R) has one zero row, then det(A) 6= 0.

1.13 Linear algebra with complex-valued numbers, vectors, and matrices
s:complexnum

Before we proceed to our last topic on matrices, we will need to understand the basics associated
with complex-valued numbers, and the associated algebraic manipulations. As we will see, these
will be naturally encountered in future calculations with square matrices, even if the matrix in
question contains only real-valued entries.

We say that z ∈ C if z = a+ib, where a, b ∈ R, and i2 = −1. The number a is the real part
of the complex number, and is sometimes denoted by Re(z), i.e., Re(z) = a. The number b is



1.13 Linear algebra with complex-valued numbers, vectors, and matrices 93

the imaginary part of the complex number, and is sometimes denoted by Im(z), i.e., Im(z) = b.
We say a vector v ∈ Cn if each entry is complex-valued, and we will often write

v = p + iq , p, q ∈ Rn.

The vector p is the real part of v , i.e., Re(v) = p , and the vector q is the imaginary part, i.e.,
Im(v) = q . For example,(

1− i5
2 + i7

)
=

(
1
2

)
+ i

(
−5
7

)
 p =

(
1
2

)
, q =

(
−5
7

)
.

We say that a matrix A ∈Mm×n(C) if each entry of the matrix is (possibly) complex-valued.
The addition/subtraction of two complex numbers is as expected: add/subtract the real parts

and imaginary parts. For example,

(2− i3) + (3 + i2) = (2 + 3) + i(−3 + 2) = 5− i.

As for multiplication, we multiply products of sums in the usual way, and use the fact that
i2 = −1; for example,

(2− i3)(3 + i2) = (2)(3) + (−i3)(3) + (2)(i2) + (−i3)(i2)
= 6− i9 + i4− i26 = 12− i5.

In particular, note that
c(a+ ib) = ac+ ibc,

i.e., multiplication of a complex number by a real number gives a complex number in which
the real and imaginary parts of the original number are both multiplied by the real number.
For example,

7(−4 + i9) = −28 + i63.

Before we can consider the problem of division, we must first think about the size of a
complex number. The complex-conjugate of a complex number z, which is denoted by z, is
given by taking the negative of the imaginary part, i.e.,

z = a+ ib  z = a− ib.

If the number is real-valued, then z = z. The complex-conjugate of a a vector v ∈ Cn is given
by

v = p + iq = p − iq .

The complex-conjugate of a matrix A is written as A, and the definition is what is to be ex-
pected. If A = (ajk), then A = (ajk). For example,

A =

(
2− i5 3
1 + i7 −3 + i5

)
 A =

(
2 + i5 3
1− i7 −3− i5

)
.

Regarding the conjugate, it is not difficult to check that

z1z2 = z1 z2,

i.e., the conjugate of a product is the product of the conjugates (see Exercise 1.13.1(a)). We further
have
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zz = (a+ ib)(a− ib) = a2 + b2 > 0,

and using this fact we say that the magnitude (absolute value) of a complex number is

|z| =
√
zz =

√
a2 + b2.

It is not difficult to check that
|z1z2| = |z1| |z2|,

i.e., the magnitude of a product is the product of the magnitudes (see Exercise 1.13.1(b)).
We consider the division of two complex numbers by thinking of it as a multiplication prob-

lem. We first multiply the complex number by the number one represented as the complex-
conjugate of the denominator divided by the complex-conjugate of the denominator. We then
write

z1
z2

=
z1
z2

z2
z2

=
1

z2z2
z1z2 =

1

|z2|2
z1z2,

so that division has been replaced by the appropriate multiplication. For example,

2− i3

3 + i2
=

(
2− i3

3 + i2

)(
3− i2

3− i2

)
=

1

13
[(2− i3)(3− i2)] =

1

13
(−i13) = −i.

We now derive and state a very important identity - Euler’s formula - which connects the ex-
ponential function to the sine and cosine. This will be accomplished via the use of the Maclaurin
series for the exponential and trigonometric functions. Recall that

ex =

∞∑
j=0

xj

j!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

sin(x) =

∞∑
j=0

(−1)j x2j+1

(2j + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

cos(x) =

∞∑
j=0

(−1)j x
2j

(2j)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · ,

and that each series converges for all x ∈ R. Since

i2 = −1, i3 = i2i = −i, i4 = i2i2 = 1,

we can write for θ ∈ R,

eiθ =

∞∑
j=0

(iθ)j

j!
= 1 + iθ − θ2

2!
− i

θ3

3!
+
θ4

4!
+ i

θ5

5!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
+ · · ·+ (−1)j θ

2j

(2j)!
+ · · ·

)
+

i

(
θ − θ3

3!
+
θ5

5!
+ · · ·+ (−1)j θ2j+1

(2j + 1)!
+ · · ·

)
.

Noting that the real part is the Maclaurin series for cos(θ), and the imaginary part is the Maclau-
rin series for sin(θ), we arrive at Euler’s formula,

eiθ = cos(θ) + i sin(θ).
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Note that for any θ ∈ R,
|eiθ| =

√
cos2(θ) + sin2(θ) = 1.

Further note that Euler’s formula yields the intriguing identity,

eiπ = −1,

which brings into one simple formula some of the most important constants and concepts in
all of mathematics.

a

b

Re z

Im z

θ

r

a+ib

Fig. 1.6 (color online) A cartoon illustration of the polar representation of complex numbers. f:ComplexPolar

As a consequence of Euler’s formula we are able to write complex numbers using a polar
representation. Let z = a+ib be given. We know that if we represent the point (a, b) in the xy-
plane, then the distance from the origin is r =

√
a2 + b2, and the angle from the positive x-axis

satisfies tan(θ) = b/a (see Figure 1.6). This allows us the polar coordinate representation,

a = r cos(θ), b = r sin(θ).

Now, we know the magnitude of the complex number is |z| =
√
a2 + b2, so we could write

a = |z| cos(θ), b = |z| sin(θ).

Upon using Euler’s formula we finally see

z = a+ ib = |z| cos(θ) + i|z| sin(θ) = |z| [cos(θ) + i sin(θ)] = |z|eiθ, (1.13.1) e:zpolar

where again

|z| =
√
a2 + b2, tan(θ) =

b

a
.

As we will see in the case study of Chapter 1.15.3, this representation of a complex number
allows us to more easily understand the multiplication of complex-valued numbers.
C Example 1.13.1. For z = 2 + i2

√
3 we have

|z| = 4, tan(θ) =
√
3  θ =

π

6
,

so 2 + i2
√
3 = 4eiπ/3.
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C Example 1.13.2. For z = −2
√
3 + i2 we have

|z| = 4, tan(θ) = − 1√
3
 θ =

5π

6
.

The choice for the angle follows from the fact that the point (−2
√
3, 2) is in the second quadrant

of the xy-plane. In conclusion, −2
√
3 + i2 = 4ei5π/6.

Does anything really change if we consider the previous linear algebra calculations
and concepts under the assumption that the matrices and vectors have complex-valued
entries? In summary, no. The definitions and properties of the span of a set of vectors,
and subspaces - in particular, the subspaces Null(A) and Col(A) - remain the same;
indeed, the only difference is that the constants may now be complex-valued. A basis
of a subspace is still computed in the same manner, and the dimension of a subspace is
still the number of basis vectors. Again, the only difference is that the vectors may have
complex-valued entries. As for the inner-product, if we define it for vectors on Cn as

〈x ,y〉 =
n∑
j=1

xjyj = x1y1 + x2y2 + · · ·+ xnyn,

then the desired properties will still hold. In particular, we will still have 〈x ,x 〉 is a
nonnegative real number, and will be zero if and only if x = 0 . Finally, nothing changes
for matrix/vector and matrix/matrix multiplication, the calculation of the inverse of a
square matrix, and the calculation of the determinant for a square matrix. In conclusion,
the only reason we did not start the chapter with a discussion of linear systems with
complex-valued coefficients is for the sake of pedagogy, as it is easier to visualize vectors
in Rn, and subspaces which are realized as real-valued linear combinations of vectors
in Rn.

C Example 1.13.3. Let us see how we can use our understanding of the algebra of complex
numbers when doing Gaussian elimination. Consider the linear system

(1− i)x1 + 4x2 = 6

(−2 + i3)x1 + (−8 + i3)x2 = −9.

Performing Gaussian elimination on the augmented matrix yields(
1− i 4 6

−2 + i3 −8 + i3 −9

)
(1/(1−i))ρ1−→

(
1 2 + i2 3 + i3

−2 + i3 −8 + i3 −9

)
(2−i3)ρ1+ρ2−→

(
1 2 + i2 3 + i3
0 −2 + i 6− i3

)
(1/(−2+i))ρ2−→

(
1 2 + i2 3 + i3
0 1 −3

)
(−2−i2)ρ2+ρ1−→

(
1 0 9 + i9
0 1 −3

)
.

The solution is the last column,

x =

(
9 + i9
−3

)
= x =

(
9
−3

)
+ ix =

(
9
0

)
.
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C Example 1.13.4. For another example, let us find Null(A) for the matrix

A =

(
3− i 4
5 6 + i2

)
.

Since
A

RREF−→
(
1 (6 + i2)/5
0 0

)
,

the null space is found by solving

x1 +
6 + i2

5
x2 = 0.

Upon setting x2 = 5t the solution vector is given by

x =

(
−(6 + i2)t

5t

)
= t

(
−6− i2

5

)
.

We conclude that

Null(A) = Span

{(
−6− i2

5

)}
, dim[Null(A)] = 1.

C Example 1.13.5. Let us find those vectors b for which the linear system Ax = b is consistent
with

A =

(
2− i 4
5 8 + i4

)
.

Gaussian elimination yields that the RREF of A is

A
RREF−→

(
1 (8 + i4)/5
0 0

)
.

Since the RREF of A has a zero row, the system Ax = b is not consistent for all b . Moreover,
only the first column is a pivot column, so by using Lemma 1.8.10 we know that a basis for
Col(A) is the first column of A, i.e.,

Col(A) = Span

{(
2− i
5

)}
, rank(A) = 1.

The linear system is consistent if and only if b ∈ Col(A).

Exercises

hw:complexconj Exercise 1.13.1. Let z1 = a1 + ib1 and z2 = a2 + ib2 be two complex numbers. Show that

(a) z1z2 = z1 z2
(b) |z1z2| = |z1| |z2|.

Exercise 1.13.2. Write each complex number z in the form |z|eiθ , where −π < θ ≤ π.

(a) z = 3− i4
(b) z = −2 + i5
(c) z = −3− i7
(d) z = 6 + i
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Exercise 1.13.3. Solve each system of equations, or explain why no solution exists.

(a) (3− i)x1 + 2x2 = 2, −4x1 + (1 + i4)x2 = −3
(b) x1 + (−2 + i5)x2 = −3, (1− i5)x1 + 3x2 = 12

Exercise 1.13.4. For each of the below problems compute the product Ax when it is well-
defined. If the product cannot be computed, explain why.

(a) A =

 2 + i 3
−2 1 + i4
3 7

 , x =

(
2 + i3

8

)

(b) A =

(
2 −1 + i3 −4

2 + i5 6 3− i7

)
, x =

 2
9

4 + i3

.

Exercise 1.13.5. For each matrix A, find Null(A), and determine its dimension.

(a) A =

(
2 + i3 26
2 8− i12

)
(b) A =

(
1− i4 17
2 2 + i8

)
Exercise 1.13.6. Solve the following linear system, and explicitly identify the homogeneous
solution, xh, and the particular solution, xp:(

3 + i2 −26
−2 12− i8

)
x =

(
13

−6 + i4

)
.

hw:2125 Exercise 1.13.7. In Example 1.8.8 it was shown that dim[Rn] = n. Show that dim[Cn] = n.

1.14 Eigenvalues and eigenvectors
s:2112

Consider a square matrix A ∈ Mn(R). As we will see in the two case studies in Chapter 1.15,
as well as when solving homogeneous systems of ODEs in ??, it will be especially useful to
identify a set of vectors, say v1, v2, . . . , vn, such that for each vector there is a constant λj such
that

Av j = λjv j , j = 1, . . . , n. (1.14.1) e:2112aa

The vectors v j , which are known as eigenvectors, and multiplicative factors λj , which are
known as eigenvalues, may be complex-valued (see Chapter 1.13). If the eigenvalues are
complex-valued, then the corresponding eigenvector also has complex-valued entries. Eigen-
vectors are vectors that have the property that matrix multiplication by A leads to a scalar
multiple of the original vector.

1.14.1 Characterization of eigenvalues and eigenvectors

How do we find these vectors v and associated multiplicative factors λ? We can rewrite 1.14.1
as

Av = λv (A− λI n)v = 0 .
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Recalling the definition of a null space, an eigenvector v can be found if we can find an eigen-
value λ such that

dim[Null(A− λI n)] ≥ 1.

If λ is an eigenvalue, then we will call Null(A − λI n) the eigenspace. An eigenvector is any
basis vector of the eigenspace.

Eigenvectors associated with a particular eigenvalue are not unique, as a basis is not
unique (recall the discussion in Chapter 1.8). However, the number of basis vectors is
unique (recall Lemma 1.8.6), so associated with each eigenvalue there will be a fixed
number of linearly independent eigenvectors.

Now, if we are given an eigenvalue, then it is straightforward to compute a basis for the as-
sociated eigenspace. The problem really is in finding an eigenvalue. This requires an additional
equation, for at the moment the linear system is a set of n equations with n+1 variables: the n
components of the vector plus the associated eigenvalue. In constructing this additional equa-
tion we can rely upon the result of Theorem 1.12.9, in which it is stated that a square matrix
has a nontrivial null space if and only if its determinant is zero. If we set

pA(λ) = det(A− λI n),

then the eigenvalues will correspond to the zeros of the characteristic polynomial pA(λ). While
we will not do it here, it is not difficult to show that the characteristic polynomial is a polynomial
of degree n, the size of the square matrix (see Exercise 1.14.4).

We summarize this discussion with the following result:

thm:1111 Theorem 1.14.1. Let A ∈ Mn(R). The zeros of the nth-order characteristic polyno-
mial pA(λ) = det(A − λI n) are the eigenvalues of the matrix A. The (not unique)
eigenvectors associated with an eigenvalue are a basis for Null(A− λI n).

Before going any further in the discussion of the theory associated with eigenvalues and
eigenvectors, let us do a relatively simple computation.
C Example 1.14.2. Let us find the eigenvalues and associated eigenvectors for

A =

(
3 2
2 3

)
.

We have
A− λI 2 =

(
3− λ 2
2 3− λ

)
,

so that the characteristic polynomial is

pA(λ) = (3− λ)2 − 4.

The zeros of the characteristic polynomial are λ = 1, 5. As for the associated eigenvectors, we
must compute a basis for Null(A − λI 2) for each eigenvalue. For the eigenvalue λ1 = 1 we
have

A− I 2
RREF−→

(
1 1
0 0

)
,
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which corresponds to the linear equation v1 + v2 = 0. Since

Null(A− I 2) = Span

{(
−1
1

)}
,

an associated eigenvector is

λ1 = 1; v1 =

(
−1
1

)
.

Because eigenvectors are not unique, any multiple of v1 given above would be an eigenvector
associated with the eigenvalue λ1 = 1. For the eigenvalue λ2 = 5 we have

A− 5I 2
RREF−→

(
1 −1
0 0

)
,

which corresponds to the linear equation v1 − v2 = 0. Since

Null(A− 5I 2) = Span

{(
1
1

)}
,

an associated eigenvector is

λ2 = 5; v2 =

(
1
1

)
.

Before continuing, we need to decide how many eigenvectors are to be associated with a
given eigenvalue. An eigenvalue λ0 is such that

mg(λ0) := dim[Null(A− λ0I n)] ≥ 1.

The integer mg(λ0) is the geometric multiplicity of the eigenvalue λ0. We know from Chap-
ter 1.8 that mg(λ0) will be the number of free variables for the associated linear system. Conse-
quently, any basis of the the eigenspace will have mg(λ0) vectors. Since a basis is not unique,
eigenvectors are not be unique; however, once a set of eigenvectors has been chosen, any other
eigenvector must be a linear combination of the chosen set.

Since the characteristic polynomial pA(λ) is an nth-order polynomial, by the Fundamental
Theorem of Algebra it can be factored as

pA(λ) = c(λ− λ1)(λ− λ2) · · · (λ− λn), c 6= 0.

If λi 6= λj for all i 6= j, then all of the eigenvalues are said to be algebraically simple (simple). If
an eigenvalue λj is algebraically simple, then the associated eigenspace will be one-dimensional,
i.e., mg(λj) = 1, so that all basis vectors for the eigenspace will be scalar multiples of each
other. In other words, for simple eigenvalues an associated eigenvector will be a scalar multiple
of any other associated eigenvector. If an eigenvalue is not simple, then we will call it a multiple
eigenvalue. For example, if

pA(λ) = (λ+ 1)(λ− 1)2(λ− 3)4,

then λ = −1 is a simple eigenvalue, and λ = 1 and λ = 3 are multiple eigenvalues. The
(algebraic) multiplicity of a multiple eigenvalue is the order of the zero of the characteristic
polynomial, and will be denoted by ma(λ0). In this example λ = −1 is such that ma(−1) = 2
(a double eigenvalue), and λ = 3 is such that ma(3) = 4 (a quartic eigenvalue).
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It is a fundamental fact of linear algebra (indeed, a consequence of Schur’s Lemma) that the
two multiplicities are related via

1 ≤ mg(λ0) ≤ ma(λ0).

As already stated, if an eigenvalue is algebraically simple, i.e., ma(λ0) = 1, then it must be
true that mg(λ0) = ma(λ0) = 1. On the other hand, if ma(λ0) ≥ 2 it may be the case that
mg(λ0) < ma(λ0). This situation is nongeneric, and can be rectified by a small perturbation of
the matrix A. Indeed, it will generically be the case that all of the eigenvalues for a given matrix
are algebraically simple.

As a final remark, we remind the reader that while eigenvectors themselves are not unique,
the number of eigenvectors is unique. In all that follows we will compute only a set of eigenvec-
tors associated with a particular eigenvalue, and not spend much effort discussing the associated
eigenspace. The reader needs to always remember that for a given set of eigenvectors associ-
ated with a given eigenvalue any linear combination of these given eigenvectors also counts as
an eigenvector.
C Example 1.14.3. Let us find the eigenvalues and associated eigenvectors for

A =

 5 0 0
0 3 2
0 2 3

 .

We have

A− λI 3 =

5− λ 0 0
0 3− λ 2
0 2 3− λ

 ,

so that the characteristic polynomial is

pA(λ) = (5− λ)[(3− λ)2 − 4].

The zeros of the characteristic polynomial are λ = 1, 5, where λ = 5 is a double root, i.e.,
λ = 5 is a double eigenvalue. Regarding the algebraic multiplicities we have ma(1) = 1 and
ma(5) = 2. As for the associated eigenvectors, we have for the eigenvalue λ1 = 1

A− 1I 3
RREF−→

 1 0 0
0 1 1
0 0 0

 ,

which corresponds to the linear system v1 = 0, v2 + v3 = 0. An eigenvector is then given by

λ1 = 1; v1 =

 0
−1
1

 .

For the eigenvalue λ2 = λ3 = 5 we have

A− 5I 3
RREF−→

0 1 −1
0 0 0
0 0 0

 ,
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which corresponds to the linear equation v2 − v3 = 0. There are two free variables, v1 and v3,
so that there are two linearly independent eigenvectors,

λ2 = λ3 = 5; v2 =

 1
0
0

 , v3 =

 0
1
1

 .

C Example 1.14.4. Let us find the eigenvalues and associated eigenvectors for

A =

 5 0 8
0 3 2
0 2 3

 .

Note that only one entry in A, a13, has changed from the previous example. We have

A− λI 3 =

5− λ 0 8
0 3− λ 2
0 2 3− λ

 ,

so that the characteristic polynomial is again

pA(λ) = (5− λ)[(3− λ)2 − 4].

As in the previous example, the eigenvalues are λ = 1 and λ = 5 with ma(1) = 1 and ma(5) =
2. As for the associated eigenvectors, we have for the eigenvalue λ1 = 1

A− 1I 3
RREF−→

 1 0 2
0 1 1
0 0 0

 ,

which corresponds to the linear system v1 + 2v3 = 0, v2 + v3 = 0. An associated eigenvector
is then

λ1 = 1; v1 =

−2−1
1

 .

For the eigenvalue λ2 = λ3 = 5 we have

A− 5I 3
RREF−→

 0 1 0
0 0 1
0 0 0

 ,

which corresponds to the linear system v2 = v3 = 0. Unlike the previous example there is now
only one free variable, v1, which means that there is only one linearly independent eigenvector
associated with both of these eigenvalues,

λ2 = λ3 = 5; v2 =

1
0
0

 .

In this example there are not as many linearly independent eigenvectors as there are eigenval-
ues.

ex:1116 C Example 1.14.5. Let us find the eigenvalues and associated eigenvectors for
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A =

(
3 −2
2 3

)
.

We have
A− λI 2 =

(
3− λ −2
2 3− λ

)
,

so that the characteristic polynomial is

pA(λ) = (3− λ)2 + 4.

The zeros of the characteristic polynomial are λ = 3 ± i2. Note that this set of eigenvalues
is a complex-conjugate pair. As for the associated eigenvectors, we have for the eigenvalue
λ1 = 3 + i2

A− (3 + i2)I 2
RREF−→

(
1 −i
0 0

)
,

which corresponds to the linear equation v1 − iv2 = 0. An eigenvector is then given by

λ1 = 3 + i2; v1 =

(
i
1

)
=

(
0
1

)
+ i

(
1
0

)
.

For the eigenvalue λ2 = 3− i2 we have

A− (3− i2)I 2
RREF−→

(
1 i
0 0

)
,

which corresponds to the linear equation v1 + iv2 = 0. An eigenvector is then given by

λ2 = 3− i2; v2 =

(
−i
1

)
=

(
0
1

)
− i

(
1
0

)
.

As was the case for the eigenvalues, eigenvectors also come in a complex-conjugate pair.
ex:1116a C Example 1.14.6. Let us find the eigenvalues and associated eigenvectors for

A =

(
0 1
−5 −2

)
.

We have
A− λI 2 =

(
−λ 1
−5 −2− λ

)
,

so that the characteristic polynomial is

pA(λ) = λ2 + 2λ+ 5 = (λ+ 1)2 + 4.

The zeros of the characteristic polynomial are λ = −1±i2. Note that once again the eigenvalues
arise in a complex-conjugate pair. As for the associated eigenvectors, we have for the eigenvalue
λ1 = −1 + i2

A− (−1 + i2)I 2
RREF−→

(
1− i2 1

0 0

)
,

which corresponds to the linear equation (1− i2)v1 + v2 = 0. An eigenvector is then given by
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λ1 = −1 + i2; v1 =

(
−1 + i2

1

)
=

(
−1
1

)
+ i

(
2
0

)
.

For the eigenvalue λ2 = −1− i2 we eventually see that an eigenvector is given by

v2 =

(
−1− i2

1

)
=

(
−1
1

)
− i

(
2
0

)
.

Thus, just as in the previous example the associated eigenvectors also come in a complex-
conjugate pair.
C Example 1.14.7. We finally consider an example for which the eigenvalues and eigenvectors
must be computed numerically. Here

A =

 1 2 3
−1 2 −3
5 6 7

 ∈M3(R),

which means that pA(λ) is a third-order polynomial. Unless the problem is very special, it is
generally the case that it is not possible to (easily) find the three roots. Using WolframAlpha we
get

eigenvalues 881,2,3<,8-1,2,-3<,85,6,7<<

Input:

EigenvaluesB
1 2 3

-1 2 -3

5 6 7

F

Results: More digits

Λ1 » 5.42882 + 2.79997 ä

Λ2 » 5.42882 - 2.79997 ä

Λ3 » -0.857635

Corresponding eigenvectors: Exact forms More digits

v1 » H0.393543 - 0.0276572 ä, -0.589816 + 0.489709 ä, 1.L
v2 » H0.393543 + 0.0276572 ä, -0.589816 - 0.489709 ä, 1.L
v3 » H-1.99398, 0.352046, 1.L

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

In other words,

λ1 ∼ 5.43 + i2.80, v1 ∼

 0.39
−0.59
1.00

+ i

−0.030.49
0.00

 ; λ3 ∼ −0.86, v3 ∼

−1.990.35
1.00

 .

http://www.wolframalpha.com/
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The second eigenvalue is the complex-conjugate conjugate of the second, i.e., λ2 = λ1, and the
associated eigenvector is the complex-conjugate of v1, i.e., v2 = v1.

1.14.2 Properties

The last three examples highlight a general phenomena. Suppose that A ∈Mn(R), and further
suppose that λ = a+ ib is an eigenvalue with associated eigenvector v = p + iq ,

Av = λv  A(p + iq) = (a+ ib)(p + iq).

Taking the complex-conjugate of both sides, and using the fact that the conjugate of a product
is the product of the conjugates,

Av = Av , λv = λ v ,

gives
Av = λ v .

Since A ∈Mn(R), A = A, so we conclude

Av = λv  A(p − iq) = (a− ib)(p − iq).

This equation is another eigenvalue/eigenvector equation for the matrix A. The eigenvalue and
associated eigenvector for this equation are related to the original via complex-conjugation. In
conclusion, if A ∈ Mn(R), then the eigenvalues come in the complex-conjugate pairs

{
λ, λ

}
,

i.e., {a± ib}, as do the associated eigenvectors {v , v}, i.e., {p ± iq}.
We conclude with some additional facts about eigenvalues and eigenvectors of A ∈Mn(R),

each of which will be useful in applications. First, the eigenvalues tell us something about the
invertibility of the matrix. We first observe that by setting λ = 0,

pA(0) = det(A);

thus, λ = 0 is an eigenvalue if and only if det(A) = 0. Since by Theorem 1.12.9 A is invertible
if and only if det(A) 6= 0, we have that A is invertible if and only if λ = 0 is not an eigenvalue.
From Exercise 1.14.4(c) we know that the characteristic polynomial is of degree n; hence, by
the Fundamental Theorem of Algebra there are precisely n eigenvalues. As we have seen in the
previous examples, there may or may not be n linearly independent eigenvectors. However,
if the eigenvalues are distinct (each one is algebraically simple), then the n eigenvectors are
indeed linearly independent. Since dim[Cn] = n (see Exercise 1.13.7), this means that we can
use the eigenvectors as a basis for Cn.
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lem:1111 Theorem 1.14.8. Consider the matrix A ∈Mn(R).

(a) If λ = a+ ib is an eigenvalue with associated eigenvector v = p + iq for some
vectors p, q ∈ Rn, then the complex-conjugate λ = a− ib is an eigenvalue with
associated complex-conjugated eigenvector v = p − iq .

(b) λ = 0 is an eigenvalue if and only if det(A) = 0.
(c) A is invertible if and only if all of the eigenvalues are nonzero.
(d) If the eigenvalues λ1, λ2, . . . , λn are distinct, i.e., all of the roots of the char-

acteristic polynomial are simple, then a set of corresponding eigenvectors
{v1, v2, . . . , vn} forms a basis for Cn.

Proof. We only need to show that if the eigenvalues are distinct, then the set of corresponding
eigenvectors forms a basis. Recall equation (1.14.1),

Av j = λjv j , j = 1, . . . , n.

Set S = Span {v1, . . . , vn}, and suppose dim[S] = r < n. Assume without loss of generality
that the set {v1, . . . , vr} is linearly independent. This means that the remaining eigenvectors
are each a linear combination; in particular, there exist constants c1, . . . , cr (not all zero) such
that

vr+1 = c1v1 + c2v2 + · · ·+ crvr. (1.14.2) e:1138aa

Multiplying both sides by A and using the linearity of matrix/vector multiplication gives

Avr+1 = c1Av1 + c2Av2 + · · ·+ crAvr,

which in turn implies

λr+1vr+1 = c1λ1v1 + c2λ2v2 + · · ·+ crλrvr.

Multiplying equation (1.14.2) by λr+1 and subtracting from this the above equation yields

c1(λr+1 − λ1)v1 + c2(λr+1 − λ2)v2 + · · ·+ cr(λr+1 − λr)vr = 0 .

Since the eigenvalues are distinct, i.e., λr+1 − λj 6= 0 for j = 1, . . . , r, and since not all of
the constants cj are equal to zero, we conclude that the vectors v1, v2, . . . , vr are linearly
dependent. This is a contradiction. Hence, we cannot write the eigenvector vr+1 as a linear
combination of the other eigenvectors. The assumption that r < n is false, and consequently
r = n. ut

1.14.3 Eigenvectors as a basis, and Fourier expansions

The moniker Fourier
appeared in
Chapter 1.9 when
we discussed
orthonormal bases.
We use it again here
because in some
instances - e.g.,
A = AT -
eigenvectors can be
scaled to form an
orthonormal basis.

As we will see in the upcoming case studies, as well as our study of linear systems of ODEs,
it is extremely beneficial to write a given vector in terms of a linearly independent set of eigen-
vectors of a given matrix. For a given matrix A ∈ Mn(R), suppose that a set of eigenvectors,
{v1, v2, . . . , vn}, forms a basis. We know from Theorem 1.14.8(d) that this is possible if the
eigenvalues are distinct. Going back to our discussion in Chapter 1.8 we then know that any
vector x ∈ Cn can be uniquely written through the expansion
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x = c1v1 + c2v2 + · · ·+ cnvn. (1.14.3) e:fourexp

Such an expansion in terms of eigenvectors is sometimes called a Fourier expansion, and
the weights are sometimes called the Fourier coefficients. The Fourier coefficients are found
through the solution of the linear system, i.e.,

c1v1 + c2v2 + · · ·+ cnvn = Pc, P = (v1 v2 · · · vn),

means
x = Pc  c = P−1x .

The matrix P is invertible because the chosen eigenvectors are assumed to be linearly inde-
pendent (otherwise, they would not form a basis), and the result of Theorem 1.12.10 states that
the inverse exists if and only if the matrix has full rank.

By writing a given vector through a Fourier expansion we develop greater insight into the
geometry associated with matrix/vector multiplication. Multiplying both sides of (1.14.3) by A
and using linearity gives

Ax = c1Av1 + c2Av2 + · · ·+ cnAvn.

Since each vector v j is an eigenvector with associated eigenvalue λj , i.e., Av j = λjv j , we can
rewrite the right-hand side of the above as

c1Av1 + c2Av2 + · · ·+ cnAvn = c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn.

Putting the pieces together yields

x = c1v1 + c2v2 + · · ·+ cnvn  Ax = c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn.

Thus, the Fourier coefficients associated with the vector Ax are a scaling of those for the vector
x , where the scaling is the eigenvalue associated with the associated eigenvector.

lem:fourexp Lemma 1.14.9. Suppose that for A ∈ Mn(R) there is a set of linearly independent
eigenvectors, {v1, v2, . . . , vn} (guaranteed if the eigenvalues are distinct). For any
x ∈ Cn there is the Fourier expansion

x = c1v1 + c2v2 + · · ·+ cnvn,

where the Fourier coefficients c1, c2, . . . , cn are uniquely determined. Moreover, the
vector Ax has the Fourier expansion

Ax = c1λ1v1 + c2λ2v2 + · · ·+ cnλnvn,

where each λj is the eigenvalue associated with the eigenvector v j .

The above result is known as the spectral decomposition of the matrix A. While we will not
go into the details here (see [34, Chapter 7.2]), it turns out to be the case that if all the eigenvalues
are real, there exist unique vectors w j such that the Fourier coefficients are given by

cj = wT
j x , j = 1, . . . , n.

Consequently, we can write each term in the sum as
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cjv j =
(
wT
j x
)
v j = v j

(
wT
j x
)
=
(
v jw

T
j

)
x .

The square matrix Pj = v jw
T
j ∈Mn(R) has rank one (see Exercise 1.14.6). The matrices Pj

are known as spectral projection matrices. We conclude with

Ax = λ1P1x + λ2P2x + · · ·+ λnPnx ,

which means that original matrix can be written as a weighted sum of rank-one matrices,

A = λ1P1 + λ2P2 + · · ·+ λnPn.

C Example 1.14.10. Consider the matrix

A =

(
0 1
−8 −6

)
.

It can be checked that the eigenvalues and associated eigenvectors are

λ1 = −2, v1 =

(
1
−2

)
; λ2 = −4, v2 =

(
1
−4

)
.

The eigenvectors are clearly linearly independent, so they form a basis. For a particular example,
let us find the Fourier coefficients for the vector x = (2 − 7)T. Using (1.14.3) we have(

2
−7

)
= c1

(
1
−2

)
+ c2

(
1
−4

)
=

(
1 1
−2 −4

)(
c1
c2

)
.

The solution to this linear system is(
c1
c2

)
=

(
1 1
−2 −4

)−1(
2
−7

)
= −1

2

(
−4 −1
2 1

)(
2
−7

)
=

1

2

(
1
3

)
.

In other words, the Fourier coefficients are

c1 =
1

2
, c2 =

3

2
,

so
x =

1

2
v1 +

3

2
v2.

Using the result of Lemma 1.14.9 we also know that

Ax =
1

2
(−2)v1 +

3

2
(−4)v2 = −v1 − 6v2.

Exercises

hw:1111 Exercise 1.14.1. Suppose that for a given A ∈ Mn(R) there is a set of linearly independent
eigenvectors, {v1, v2, . . . , vn}. Suppose that a given x has the Fourier expansion

x = c1v1 + c2v2 + · · ·+ cnvn.

Defining
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A` := A ·A · · ·A︸ ︷︷ ︸
` times

,

show that:

(a) A2x = c1λ
2
1v1 + c2λ

2
2v2 + · · ·+ cnλ

2
nvn

(b) A3x = c1λ
3
1v1 + c2λ

3
2v2 + · · ·+ cnλ

3
nvn

(c) if ` ≥ 4, A`x = c1λ
`
1v1 + c2λ

`
2v2 + · · ·+ cnλ

`
nvn (Hint: use (a), (b), and induction).

Exercise 1.14.2. Compute by hand the eigenvalues and all corresponding eigenvectors for each
matrix. If the eigenvalue is complex-valued, write the eigenvector in the form v = p + iq .

(a) A =

(
1 −2
−2 4

)
(b) A =

(
3 −2
2 3

)
(c) A =

(
2 −6
3 −7

)
(d) A =

(
1 4
−2 −3

)
(e) A =

 2 5 −2
5 2 1
0 0 −3


(f) A =

 3 0 0
1 −1 2
−2 −2 −1


Exercise 1.14.3. In each of the following the characteristic polynomial of A ∈Mn(R) is given.
Determine n, list each eigenvalue and its algebraic multiplicity, and state whether or not the
matrix is invertible.

(a) pA(λ) = (λ− 3)(λ2 + 2λ+ 5)(λ− 4)2

(b) pA(λ) = λ2(λ+ 3)(λ2 − 4λ+ 13)(λ− 1)4

(c) pA(λ) = (λ+ 5)(λ+ 2)3(λ2 + 6λ+ 25)2

(d) pA(λ) = λ(λ2 + 9)(λ2 + 25)(λ− 8)

hw:1112 Exercise 1.14.4. Suppose thatA ∈Mn(C), and let pA(λ) = det(A−λI n) be the characteristic
polynomial.

(a) If n = 2, show that pA(λ) is a polynomial of degree two.
(b) If n = 3, show that pA(λ) is a polynomial of degree three.
(c) Show that pA(λ) is a polynomial of degree n.

Exercise 1.14.5. Suppose that A ∈Mn(C) is invertible. If for the matrix A, λ is an eigenvalue
with associated eigenvector v , show that for the matrix A−1 there is the eigenvalue 1/λ with
associated eigenvector v .

hw:spectralproj Exercise 1.14.6. Suppose that v ,w ∈ Rn. Show that:

(a) vwT ∈Mn(R)
(b) rank(vwT) = 1. (Hint: show that the matrix has only one linearly independent column)

Exercise 1.14.7. For each of the following matrices, write the vector x = (4 − 3)T as a linear
combination of eigenvectors. Explicitly give the weights (Fourier coefficients).

(a) A =

(
1 −2
−2 4

)
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(b) A =

(
3 −2
2 3

)
(c) A =

(
2 −6
3 −7

)
(d) A =

(
1 4
−2 −3

)
Exercise 1.14.8. Suppose A ∈M2(R) has eigenvalues and associated eigenvectors given by

λ1 = −3, v1 =

(
−2
5

)
; λ2 = 7, v1 =

(
3
8

)
.

(a) Find A(5v1 − 3v2).
(b) If x = (6 4)T, find Ax .

Exercise 1.14.9. Let x = (−3 5)T. For each of the following matrices, write the vector A13x
as a linear combination of eigenvectors. Explicitly give the weights (Fourier coefficients). (Hint:
Use Exercise 1.14.1)

(a) A =

(
1 −2
−2 4

)
(b) A =

(
3 −2
2 3

)
(c) A =

(
2 −6
3 −7

)
(d) A =

(
1 4
−2 −3

)
Exercise 1.14.10. Let x = (5 2 −7)T. For each of the following matrices, write the vector A9x
as a linear combination of eigenvectors. Explicitly give the weights (Fourier coefficients). (Hint:
Use Exercise 1.14.1)

(a) A =

 2 5 −2
5 2 1
0 0 −3


(b) A =

 3 0 0
1 −1 2
−2 −2 −1


Exercise 1.14.11. Determine if each of the following statements is true or false. Provide an
explanation for your answer.

(a) It is possible for A ∈M4(R) to have five eigenvalues.
(b) Every A ∈M2(R) has two real eigenvalues.
(c) If A ∈M6(R), then A has at most six linearly independent eigenvectors.
(d) If Ax = 0 has an infinite number of solutions, then all of the eigenvalues for A are

nonzero.
(e) If A ∈M5(R), then it is possible for the characteristic polynomial to be of degree four.

hw:evaltranspose Exercise 1.14.12. Let A ∈Mn(R). Show that:

(a) pA(λ) = pAT(λ) (Hint: use Exercise 1.12.2(c))
(b) λ is an eigenvalue of A if and only if λ is an eigenvalue of AT.

hw:evalone Exercise 1.14.13. Let A ∈Mn(R) have the properties:
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(a) all the entries are nonnegative
(b) the sum of the values in each column is one.

Show that:

(a) λ = 1 is an eigenvalue of AT (Hint: consider ATv , where v = (1 1 · · · 1)T)
(b) λ = 1 is an eigenvalue of A. (Hint: use the result of Exercise 1.14.12(b))

1.15 Case studies
s:212

We now consider three problems in which it soon becomes clear that knowing the eigenvalues
and associated eigenvectors for a given matrix clearly helps in understanding the solution.

1.15.1 Voter registration
s:markov

Consider the following table:

D R I

D 0.90 0.03 0.10

R 0.02 0.85 0.20

I 0.08 0.12 0.70

Here R represents Republicans, D Democrats, and I Independents. Let Dj , Rj , Ij represent
the number of voters in each group in year j. The table provides information regarding the
manner in which voters change their political affiliation from one year to the next. For example,
reading down the first column we see that from one year to the next 90% of the Democrats
remain Democrats, 2% become Republicans, and 8% become Independents. On the other hand,
reading across the first row we see that the number of Democrats in a following year is the sum
of 90% of the Democrats, 3% of the Republicans, and 10% of the Independents in the preceding
year.

We wish to know what is the distribution of voters amongst the three groups after many
years. Using the table we see that the number of voters in each group in year n + 1 given the
number of voters in each group in year n follows the rule,

Dn+1 = 0.90Dn + 0.03Rn + 0.10In

Rn+1 = 0.02Dn + 0.85Rn + 0.20In

In+1 = 0.08Dn + 0.12Rn + 0.70In.

We implicitly assume here that the total number of voters is constant from one year to the next,
so Dn +Rn + In = N for any n, where N is the total number of voters. Upon setting

xn =

Dn

Rn
In

 , M =

 0.90 0.03 0.10
0.02 0.85 0.20
0.08 0.12 0.70

 ,

we can rewrite this as the discrete dynamical system
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xn+1 = Mxn, x 0 given. (1.15.1) e:1111

The dynamical system (1.15.1) is known as a Markov process, and it is distinguished by the fact
that the sum of each column of the transition (stochastic, Markov) matrix M is 1.

For a given initial distribution of voters x 0, we wish to determine the distribution of voters
after many years, i.e., we wish to compute limn→+∞ xn. First, we need to solve for xn. Since

x 1 = Mx 0, x 2 = Mx 1 = M (Mx 0),

by defining M k := MM · · ·M , i.e., M k is the matrix M multiplied by itself k times, we have

x 2 = M 2x 0.

Continuing in this fashion gives

x 3 = Mx 2 = M (M 2x 0) = M 3x 0, x 4 = Mx 3 = M (M 3x 0) = M 4x 0,

so by an induction argument that the solution to the dynamical system is

xn = M nx 0. (1.15.2) e:1111a

Thus, our question is answered by determining limn→+∞M n.
We now use the eigenvalues and eigenvectors of M , and the Fourier expansion result of

Lemma 1.14.9, in order to simplify the expression (1.15.2). These quantities are computed using
WolframAlpha using exact arithmetic

http://www.wolframalpha.com/
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eigenvalues 889�10,3�100,1�10<,82�100,85�100,2�10<,88�100,12�100,7�10<<

Input:

EigenvaluesB

9

10

3

100

1

10

2

100

85

100

2

10

8

100

12

100

7

10

F

Results: Exact forms

Λ1 � 1

Λ2 » 0.86

Λ3 » 0.59

Corresponding eigenvectors: Approximate forms

v1 �

35

24

,

55

36

, 1

v2 � H-7, 6, 1L

v3 � -
1

4

, -
3

4

, 1

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

Since the eigenvalues,
λ1 = 1, λ2 ∼ 0.86, λ3 ∼ 0.59 (1.15.3) e:cs1eval

are distinct, by Theorem 1.14.8(d) the associated eigenvectors are linearly independent. Letting
P = (v1 v2 v3), we know by Lemma 1.14.9 that the initial condition has a Fourier expansion
in terms of the eigenvectors,

x 0 = c1v1 + c2v2 + c3v3 = Pc  c = P−1x 0. (1.15.4) e:1111b

Now that the initial condition has been written in terms of the eigenvectors we can rewrite
the solution in terms of the eigenvalues and eigenvectors. Via the linearity of matrix/vector
multiplication, and using the expansion (1.15.4), we have (1.15.2) can be rewritten as

xn = c1M
nv1 + c2M

nv2 + c3M
nv3. (1.15.5) e:1111aa

Regarding the term M nv `, for each ` = 1, 2, 3

Mv ` = λ`v `  M 2v ` = M (Mv `) = λ`Mv ` = λ2`v `,

which by an induction argument leads to

M nv ` = λn` v `
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(see Exercise 1.14.1). Substitution of the above into (1.15.5) then gives the solution in the form

xn = c1λ
n
1v1 + c2λ

n
2v2 + c3λ

n
3v3, c = P−1x 0. (1.15.6) e:1115

We are now ready to determine the asymptotic limit of the solution. Using the eigenvalues
as described in (1.15.3) we have

lim
n→+∞

λn1 = 1, lim
n→+∞

λn2 = lim
n→+∞

λn3 = 0.

Consequently, for the solution formula (1.15.6) we have the asymptotic limit,

lim
n→+∞

xn = c1v1, v1 =

35/24
55/36

1

 .

From this formula we see that it is important only to determine c1. Since the total number of
people must be constant must be the same for each n, in the limit the total number of people is
the same as the beginning number of people, i.e.,

c1

(
35

24
+

55

36
+ 1

)
= N  c1 =

72

287
N.

This observation allows us to write

c1v1 =
N

287

 105
110
72

 ∼ N
 0.37

0.38
0.25

 .

In conclusion,

lim
n→+∞

xn ∼ N

 0.37
0.38
0.25

 ,

so in the long run 37% of the voters are Democrats, 38% are Republicans, and 25% are Inde-
pendents. Note that this final distribution of voters is independent of the initial distribution of
voters.

What is “long run” in this case? Since

λn2 , λ
n
3 < 10−4  n ≥ 62,

the terms c2λn2v2 and c3λn3v3 in the solution Fourier expansion (1.15.6) will be negligible for
n ≥ 62. Thus, for n ≥ 62 the solution will essentially be the asymptotic limit, which means that
after 62 years the distribution of voters will be for all intents and purposes that given above.

1.15.2 Discrete SIR model
s:sirdis

The dynamics of epidemics are often based upon SIR models. In a given population there are
three subgroups:

(a) susceptible (S): those who are able to get a disease, but have not yet been infected
(b) infected (I): those who are currently fighting the disease
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(c) recovered (R): those who have had the disease, or are immune.

Although it is not necessary, it is often assumed that the entire population,

N = S + I +R,

is a constant. Moreover, it is assumed that the number of people in each group does not depend
upon location. Consequently, the model to be given is reasonable when looking at epidemics in
a school environment, but it not very good when trying to understand nationwide outbreaks of
disease (which are generally more regional).

Paladini et al. [37] provide a descriptive discrete-time dynamical system of the form

Sn+1 = qSn + cRn

In+1 = (1− q)Sn + bIn

Rn+1 = (1− b)In + (1− c)Rn.
(1.15.7) e:sir1

Here Sj is the number of susceptible people in the sampling interval j, Ij is the number of
infected people in the sampling interval j, and Rj is the number of recovered people in the
sampling interval j. Depending upon the disease being studied, the sampling interval may be
monthly, yearly, or even larger. The model assumes that:

(a) susceptible people must become infected before recovering
(b) infected people must recover before again becoming susceptible
(c) recovered people cannot become infected without first becoming susceptible.

As for the parameters, we have:

(a) 0 ≤ q ≤ 1 is the probability that a susceptible avoids infection
(b) 0 ≤ b ≤ 1 is the proportion of individuals which remain infected
(c) 0 ≤ c ≤ 1 is the fraction of recovered individuals which lose immunity.

The probability parameter q is generally a function of both S and I , e.g.,

q = 1− p I
N
,

where p is the probability of the infection being transmitted through a time of contact. We will
assume that q is fixed; in particular, we will assume that it does not depend upon the proportion
of infected people. It is not difficult to check that

Sn+1 + In+1 +Rn+1 = Sn + In +Rn,

so the total population remains constant for all n (see Exercise 1.15.3). We could use this fact to
reduce the number of variables in (1.15.7), but we will not do so in our analysis.

We now proceed to solve (1.15.7). Upon setting

xn =

 Sn
In
Rn

 , A =

 q 0 c
1− q b 0
0 1− b 1− c

 ,

we can rewrite the dynamical system in the form

xn+1 = Axn. (1.15.8) e:sir2
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Note that this dynamical system shares (at least) one feature with the Markov process associated
with the voter registration problem: the sum of each column of the matrix A is 1. By following
the argument leading to (1.15.2) we know the solution is

xn = Anx 0.

Moreover, we know that the eigenvalues and associated eigenvectors of A can be used to sim-
plify the form of the solution. Writing Av j = λjv j for j = 1, 2, 3, we know that the solution
can be written

xn = c1λ
n
1v1 + c2λ

n
2v2 + c3λ

n
3v3. (1.15.9) e:sir3

The underlying assumption leading to the solution formula in (1.15.9), which will be verified
for specific values of b, c, q, is that the eigenvectors are linearly independent. We then know by
Lemma 1.14.9 that the initial condition x 0 has the Fourier expansion

x 0 = c1v1 + c2v2 + c3v3,

and the Fourier coefficients are found by solving the linear system

Pc = x 0  c = P−1x 0, P = (v1 v2 v3) .

We are now ready to determine the asymptotic limit of the solution. Following [37] we will
assume

b = 0.5, c = 0.01.

If we further assume q = 0.2, then the matrix A becomes

A =

0.2 0 0.01
0.8 0.5 0
0 0.5 0.99

 .

Using WolframAlpha and exact arithmetic we find the eigenvalues and associated eigenvectors
to be:

http://www.wolframalpha.com/


1.15 Case studies 117

eigenvalues 882�10,0,1�100<,88�10,5�10,0<,80,5�10,99�100<<

Input:

EigenvaluesB

2

10
0

1

100

8

10

5

10
0

0
5

10

99

100

F

Results: Exact forms

Λ1 � 1

Λ2 » 0.47159

Λ3 » 0.21841

Corresponding eigenvectors: Approximate forms

v1 �

1

80

,

1

50

, 1

v2 �

1

100

K29 - 641 O,

1

100

K-129 + 641 O, 1

v3 �

1

100

K29 + 641 O,

1

100

K-129 - 641 O, 1

Alternate form:

:1,

69

200

+
641

200

,

69

200

-
641

200

>

Generated by Wolfram|Alpha (www.wolframalpha.com) on June 3, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

Because the eigenvalues are distinct,

λ1 = 1, λ2 ∼ 0.47, λ3 ∼ 0.22,

we know that the associated eigenvectors are linearly independent.
Since

lim
n→+∞

λn1 = 1, lim
n→+∞

λn2 = lim
n→+∞

λn3 = 0,

we have the asymptotic limit

lim
n→+∞

xn = c1v1, v1 =

 1/80
1/50
1

 .

We see that we now must determine c1. Since the total number of people is constant for all n,
in the limit the total number of people is the same as the beginning number of people, which
leads to

c1

(
1

80
+

1

50
+ 1

)
= N  c1 =

400

413
N.

This observation allows us to write
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c1v1 =
N

413

 5
8

400

 ∼ N
0.012

0.019
0.969

 .

In conclusion,

lim
n→+∞

xn = N

0.012
0.019
0.969

 ,

so in the long run 1.2% of the people are susceptible, 1.9% of the people are infected, and 96.9%
of the people are recovered. Note that this final distribution of the population is independent of
the number of people who were originally infected.

What is “long run” in this case? Since

λn2 , λ
n
3 < 10−4  n ≥ 13,

the terms c2λn2v2 and c3λn3v3 in the solution Fourier expansion (1.15.6) will be negligible for
n ≥ 13. Thus, for n ≥ 13 the solution will essentially be the asymptotic limit, which means
that after 13 sampling intervals the distribution of people will be for all intents and purposes
that given above.

1.15.3 Northern spotted owl
s:owl

The size of the Northern spotted owl population is closely associated with the health of the
mature and old-growth coniferous forests in the Pacific Northwest. Over the last few decades
there has been loss and fragmentation of these forests, which may potentially effect the long-
term survival of this species of owl. For spotted owls there are three distinct groupings:

(a) juveniles (j) under one year old
(b) subadults (s) between one and two years old
(c) adults (a) two years old and older.

The owls mate during the latter two life stages, and begin breeding as adults.
In year n let jn be the number of juveniles, sn be the number of subadults, and an be the

number of adults. Mathematical ecologists have modeled a particular spotted owl population
via the discrete dynamical system

jn+1 = 0.33an

sn+1 = 0.18jn

an+1 = 0.71sn + 0.94an.

The juvenile population in the next year is 33% of the adult population, 18% of the juveniles in
one year become subadults in the next year, 71% of the subadults in one year become adults
the next year, and 94% of the adults survive from one year to the next (see Lamberson et al. [26],
Lay [27, Chapter 5], and the references therein). Upon setting

xn =

 jn
sn
an

 ,

we can rewrite this dynamical system in the form
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xn+1 = Axn, A =

 0 0 0.33
0.18 0 0
0 0.71 0.94

 . (1.15.10) e:owl1

For a given initial distribution of owls, we wish to see what is the distribution of the owls
after many years. We first solve for xn in terms of x 0. Following the argument leading to (1.15.2)
we know the solution is

xn = Anx 0. (1.15.11) e:owl2

Following our discussion in the previous case study, we know that we next wish to use the
eigenvalues and associated eigenvectors for the matrix A. These quantities are computed using
WolframAlpha using exact arithmetic (the exact expressions are not shown)

eigenvalues 880,0,33�100<,818�100,0,0<,80,71�100,94�100<<

Input:

EigenvaluesB

0 0
33

100

18

100
0 0

0
71

100

94

100

F

Results: More digits

Λ1 » 0.983593

Λ2 » -0.0217964 + 0.205918 ä

Λ3 » -0.0217964 - 0.205918 ä

Corresponding eigenvectors: Exact forms More digits

v1 » H0.335505, 0.0613982, 1.L
v2 » H-0.167752 - 1.58482 ä, -1.35464 + 0.290026 ä, 1.L
v3 » H-0.167752 + 1.58482 ä, -1.35464 - 0.290026 ä, 1.L

Alternate form:

:
1

1 500 000

470 000 + 174 991 625 000 000 000 - 3 375 000 000 000 1 742 033 777
3

+

5000 1 399 933 + 27 1 742 033 777
3

,

root of 500 000 x
3

- 470 000 x
2

- 21 087 near x � -0.0217964 + 0.205918 ä ,

root of 500 000 x
3

- 470 000 x
2

- 21 087 near x � -0.0217964 - 0.205918 ä >

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

In particular, the eigenvalues are

λ1 ∼ 0.98, λ2 ∼ −0.02 + i0.21, λ3 ∼ −0.02− i0.21.

By following the logic leading to (1.15.6) we know the solution is

xn = c1λ
n
1v1 + c2λ

n
2v2 + c3λ

n
3v3, x 0 = c1v1 + c2v2 + c3v3. (1.15.12) e:owl6

Because the eigenvectors are complex-valued, the Fourier coefficients may also be.
The asymptotic behavior of the solution depends on the size of the eigenvalues. Looking back

to the solution formula (1.15.12), we need to understand what happens when we take successive
powers of the eigenvalues. While we understand what λn1 means, we do not have an intuitive

http://www.wolframalpha.com/
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understanding as to what it means when we write λn2 and λn3 . Recall that we showed in (1.13.1)
complex numbers z = a+ ib can be written in the polar form

z = |z|eiθ; eiθ = cos θ + i sin θ, tan θ =
b

a
.

The polar representation of complex numbers allows us to write

zn = |z|n
(
eiθ
)n

= |z|neinθ.

In particular, we have

λ2 = 0.21ei0.53π  λn2 = 0.21nei0.53nπ

λ3 = 0.21e−i0.53π  λn3 = 0.21ne−i0.53nπ.

Since
|eiθ| = 1  |einθ| = |eiθ|n = 1,

the magnitude of zn is controlled solely by the magnitude of z,

|zn| = |z|n
∣∣einθ∣∣ = |z|n.

Thus, in our example it will be the case that |λn2 | = |λn3 | < 10−4 for n ≥ 6. Going back to the
solution formula (1.15.12), we see that for n ≥ 6 we can write it as

xn ∼ 0.98n c1v1.

In order to properly interpret this solution formula, we first want to write the eigenvector v1

so that each entry corresponds to the percentage of the total owl population in each subgroup.
This requires that the entries of the eigenvector sum to one. Unfortunately, WolframAlpha does
not present an eigenvector with that property; instead, we get

v1 ∼

 0.3355
0.0613
1.0000

 .

We know that eigenvectors are not unique, and can be scaled in any desired fashion. We find
the rescaled version of the eigenvector using WolframAlpha

http://www.wolframalpha.com/
http://www.wolframalpha.com/
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80.3355,0.0613,1.0<�H0.3355+0.0613+1.0L

Input:

80.3355, 0.0613, 1.<

0.3355 + 0.0613 + 1.

Result:

80.240192, 0.043886, 0.715922<

Total:

0.240192 + 0.043886 + 0.715922 � 1.

Vector length:

0.756414

Normalized vector:

H0.31754, 0.0580185, 0.946468L

Pie chart:

0.72

0.24

0.044

0.72 H71.6%L

0.24 H24.0%L

0.044 H4.4%L

Spherical coordinates Hradial, polar, azimuthalL:

r » 0.756414 , Θ » 18.8322 ° , Φ » 10.3544 °

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

The desired eigenvector is approximately

v1 ∼

 0.24
0.04
0.72

 .

As for the constant c1, we first rewrite the system (1.15.12) in matrix/vector form,

x 0 = Pc, P = (v1 v2 v3).

We numerically compute P−1 using WolframAlpha

inverse 880.2402,-0.1678-1.5848i,-0.1678+1.5848i<,80.0439,-1.3546+0.2900i,-1.3546-0.2900i<,80.7159,1.,1.<<

Input interpretation:

0.2402 -0.1678 - 1.5848 ä -0.1678 + 1.5848 ä

0.0439 -1.3546 + 0.29 ä -1.3546 - 0.29 ä

0.7159 1. 1.

-1

Hmatrix inverseL

ä is the imaginary unit »

Result:

0.169497 + 0. ä 0.926274 + 5.55112 ´ 10
-17

ä 1.28317 - 3.40402 ´ 10
-18

ä

-0.0606716 + 0.296228 ä -0.33156 - 0.105301 ä 0.0406884 - 0.0929338 ä

-0.0606716 - 0.296228 ä -0.33156 + 0.105301 ä 0.0406884 + 0.0929338 ä

Dimensions:

3 HrowsL ´ 3 HcolumnsL

Matrix plot:

1 2 3

1

2

3

1 2 3

1

2

3

Determinant: Step-by-step solution

-1.38778 ´ 10
-17

- 0.292237 ä

Trace:

-0.121374 - 0.0123673 ä

Characteristic polynomial:

-H0.121374 + 0.0123673 äL x
2

- H0.0847487 + 0.0334319 äL x - x
3

+ I1.11022 ´ 10
-16

- 0.292237 äM

Eigenvalues:

Λ1 » -0.0589837 + 0.698472 ä

Λ2 » -0.569921 - 0.34344 ä

Λ3 » 0.507531 - 0.367399 ä

Generated by Wolfram|Alpha (www.wolframalpha.com) on March 27, 2014 from Champaign, IL.

© Wolfram Alpha LLC— A Wolfram Research Company
1

This is a numerical calculation, so the first row of the inverse is actually composed of purely
real numbers. Upon writing x 0 = (j0 s0 a0)

T, we have

c = P−1x 0  c1 ∼ 0.17j0 + 0.93s0 + 1.28a0.

http://www.wolframalpha.com/
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In conclusion, we have

c1v1 ∼ [0.17j0 + 0.93s0 + 1.28a0]

 0.24
0.04
0.72

 .

Thus, for n ≥ 6 we can say

xn ∼ 0.98n[0.17j0 + 0.93s0 + 1.28a0]

0.24
0.04
0.72

 .

Roughly 24% of the owls will be juveniles, 4% of the owls will be subadults, and 72% of the owls
will be adults. The total number of owls in each group will depend on the initial distribution.
The overall population will slowly decrease, and assuming no changes in the conditions leading
to the original model (1.15.10) the owls will eventually become extinct (e.g., 0.98n ≤ 0.1 for
n ≥ 114).

Exercises

Exercise 1.15.1. Consider the below table, which represents the fraction of the population in
each group - City (C), and Suburban (S) - which migrates to a different group in a given year.
Assume that the total population is constant. Further assume that there are initially 1500 city
dwellers, and 1000 suburbanites.

(a) How many people will there be in each group after many years? Assume that the total
number of people is constant.

(b) Does your answer in (a) depend on the initial number of people in each group?

C S

C 0.94 0.15

S 0.06 0.85

Exercise 1.15.2. Consider the below table, which represents the fraction of the population in
each group - City (C), Suburban (S), and Rural (R) - which migrates to a different group in a
given year. Assume that the total population is constant. Further assume that there are initially
1000 city dwellers, 750 suburbanites, and 250 rural dwellers.

(a) How many people will there be in each group after many years? Assume that the total
number of people is constant.

(b) Does your answer in (a) depend on the initial number of people in each group?

C S R

C 0.91 0.09 0.02

S 0.05 0.87 0.08

R 0.04 0.04 0.90

hw:sir1 Exercise 1.15.3. Consider the SIR model given in (1.15.7).

(a) Show that the model supports that the total population is fixed, i.e., show that Sn+ In+
Rn = S0 + I0 +R0 for all n ≥ 1.
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(b) Writing N = Sn + In +Rn, show that the system is equivalent to

Sn+1 = (q − 1)Sn − cIn + cN

In+1 = (1− q)Sn + bIn.

(c) If one solves for (Sn, In) in part (b), how is Rn found?

Exercise 1.15.4. Consider the SIR case study of Chapter 1.15.2. Suppose that b = 0.8 and c =
0.01. Further suppose that n is large.

(a) If q = 0.2, what percentage of the total population will be comprised of infected people?
(b) If q = 0.7, what percentage of the total population will be comprised of infected people?

Exercise 1.15.5. Consider the SIR case study of Chapter 1.15.2. Suppose that c = 0.1 and q =
0.4. Further suppose that n is large.

(a) If b = 0.05, what percentage of the total population will be comprised of recovered
people?

(b) If b = 0.35, what percentage of the total population will be comprised of recovered
people?

Exercise 1.15.6. Consider the SIR case study of Chapter 1.15.2. Suppose that b = 0.4 and q =
0.3. Further suppose that n is large.

(a) If c = 0.02, what percentage of the total population will be comprised of susceptible
people?

(b) If c = 0.25, what percentage of the total population will be comprised of susceptible
people?

Exercise 1.15.7. Consider the case study of the Northern spotted owl in Chapter 1.15.3. Let the
fraction of subadults who become adults be represented by the parameter r (replace 0.71 with
r in the matrix of (1.15.10)). Suppose that n is large.

(a) If r = 0.1, what percentage of the total population will be comprised of subadults?
(b) If r = 0.45, what percentage of the total population will be comprised of subadults?

Exercise 1.15.8. Consider the case study of the Northern spotted owl in Chapter 1.15.3. Let the
fraction of adults who survive from one year to the next be represented by the parameter r
(replace 0.94 with r in the matrix of (1.15.10)). Suppose that n is large.

(a) If r = 0.65, what percentage of the total population will be comprised of adults?
(b) If r = 0.85, what percentage of the total population will be comprised of adults?

Group projects

1.1. A second-order discrete dynamical system which arises, e.g., when numerically solving a
Sturm-Liouville problem, is

yj+1 − 2yj + yj−1 = λyj , j = 1, . . . , n.

Here λ is a real-valued parameter. Sturm-Liouville problems arise in the study of vibrating
strings, heat flow in an insulated wire, and quantum mechanics. The boundary conditions to
be considered here are

y0 = yn+1 = 0.
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One solution to this problem is the trivial solution, yj = 0 for j = 1, . . . , n, and it is valid for
any value of λ. The goal is find those values of λ for which there is a nontrivial solution.

(a) Setting

y =


y1
y2
...
yn

 ∈ Rn,

find the symmetric matrix A so that the problem can be rewritten

Ay = λy .

(b) Suppose that n = 2. Find the eigenvalues and associated eigenvectors.

The remaining questions are devoted to finding an explicit expression for the eigenvalues if
n ≥ 3.

(c) Set h = 1/(n+ 1), and for an as yet unknown α write

yj = eiαjh = cos(αjh) + i sin(αjh).

By using the original system show that

eiα(j+1)h + eiα(j−1)h = (2 + λ)eiαjh.

(d) Solve the equation in part (c) and show that

λ = −2 (1− cos(αh)) .

(e) As written the eigenvector y is complex-valued,

y =


cos(αh)
cos(2αh)

...
cos(nαh)

+ i


sin(αh)
sin(2αh)

...
sin(nαh)

 = p + iq .

Use linearity to show that the real part, p , and the imaginary part, q , are both real-valued
eigenvectors associated with the real eigenvalue given in part (d).

(f) Use the boundary condition at j = 0, y0 = 0, to conclude the physically relevant eigen-
vector is

q =


sin(αh)
sin(2αh)

...
sin(nαh)

 .

(g) Use the boundary condition at j = n+ 1, yn+1 = 0, to determine the values of α which
lead to a nontrivial solution.

(h) What are the eigenvalues λ1, λ2, . . . , λn for the matrix A?

1.2. LetS ∈Mn(R) be a symmetric matrix,ST = S . We will suppose that all of the eigenvalues
are distinct. While we will not prove it, the eigenvalues must be real; hence, we can order them,
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λ1 < λ2 < · · · < λn.

The associated eigenvectors will be denoted v j for j = 1, . . . , n. Recall the definition of an
inner-product given in Definition 1.9.1.

(a) Show that 〈Sx ,y〉 = 〈x ,Sy〉. (Hint: consider Exercise 1.10.8 and Exercise 1.10.9)
(b) Show that the associated eigenvectors are orthogonal, 〈v i, v j〉 = 0 for i 6= j. (Hint:

consider the quantity 〈Sv i, v j〉, and use part (a))
(c) From part (b) we can normalize the eigenvectors to be orthonormal,

〈v i, v j〉 =

{
0, i 6= j

1, i = j.

If for a given vector x we write the Fourier expansion,

x = c1v1 + c2v2 + · · ·+ cnvn,

what are the coefficients cj for j = 1, . . . , n?
(d) What is the Fourier expansion for Sx ? How do the coefficients for Sx relate to those of

x ?
(e) Find an expression for 〈Sx ,x 〉 in terms of the eigenvalues, λ1, . . . , λn, and coefficients,

c1, . . . , cn.
(f) If λ1 > 0, i.e., if all of the eigenvalues are positive, show that 〈Sx ,x 〉 > 0 for any vector

x .
(g) If λn < 0, i.e., if all of the eigenvalues are negative, show that 〈Sx ,x 〉 < 0 for any vector

x .

1.3. A state-space model of a control system includes a difference equation of the form

xk+1 = Axk + ukb, k = 0, 1, . . . .

Here A ∈Mn(R) and b ∈ Rn. The vector xk is the state vector at “time” k, and the scalar uk
is a control or input at time k. The pair (A, b) is said to be controllable if for a given final state,
x f , there is a sequence of control scalars {u0, u1, . . . , un−1} such that xn = x f .

(a) For a given initial state x 0, find the state:

• x 1

• x 2

• xn for n ≥ 3.

Write your solution only in terms of the initial state x 0 and the control scalars.
(b) Rewrite your solution formula for xn in the form,

xn = C 0x 0 +C 1u ,

for some matrices C 0,C 1 ∈ Mn(R), and some vector u ∈ Rn which depends upon
the input sequence.

(c) Show that the system is controllable if and only if

rank
(
An−1b An−2b · · · Ab b

)
= n.

(d) Set
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A =

 0.8 −0.3 0.0
0.2 0.5 1.0
0.0 0.0 −0.5

 , b =

 b1
b2
0

 .

Show that the pair (A, b) is NOT controllable for any b1, b2 ∈ R.
(e) Set

A =

 0.8 −0.3 0.0
0.2 0.5 1.0
0.0 0.0 −0.5

 , b =

 0
b2
b3

 .

Determine the value(s) of b2, b3 ∈ R for which the pair (A, b) is NOT controllable.

1.4. The goal of Google’s Page Rank algorithm is to determine the “importance” of a given
web page. For example, Wikipedia is more important than the webpage of Todd Kapitula.
Importance can be quantified through a few basic rules:

(a) the importance of page A is measured by the likelihood that websurfer S will visit A
(b) the most likely way for S to reach A from page B is to click on a link to A (versus randomly

choosing A from the billions of potential pages)
(c) S is more likely to click on the link from A to B (rather than on a link to some other page

C from B) if there are not many links from B to other pages
(d) in order to click on a link from B to A, S must already be on B
(e) S is more likely to be on B if B is also important.

In summary, important pages are linked to by many other important pages; on the other hand,
if a webpage links to many other webpages, the value of each link is watered down.

For example, consider the network of pages shown below. Webpages A, B, C, and D are least
important because no other page connects to them. Webpages E and F are each linked to be
three other pages (A, B, and C for E, and A, D, and E for F); moreover, one of the pages linking
to F is important (namely, E), but none of the pages linking to E are important. Consequently,
webpage F is more important than webpage E. In addition, page A contributes less to the im-
portance of pages E and F than do pages B, C, and D, as it links to two pages, whereas the others
link to one each. These extra links, however, do not affect the ranking of A; instead, they only
affect the rank of the pages linked to by A.

A

B DFE

C

We begin in the following manner to make this discussion quantitative. Let RA be then
ranking of page A (similarly for other pages). Let `jk denote whether or not there is a link from
webpage j to webpage k,

`jk =

{
0, no link from j to k

1, link from j to k.

For example, in the above network `AE = 1, but `EA = 0. We (initially) assume a webpage
does not link to itself, so `jj = 0. The total number of links from page j to other pages is given
by

https://www.wikipedia.org/
http://www.calvin.edu/~tmk5/


Group projects 127

nj =
∑
k

`jk.

For example, in the above network,

nA = 2, nE = 1, nF = 0.

The ranking of a webpage will be defined to be the weighted sum of the number of number
of links from other pages, with the weight being the ratio of the page rank and total number of
links,

Rj =
∑
k

`kj
nk

Rk.

For example, in the sample network,

RA = 0, RE =
1

2
RA +RB +RC, RF =

1

2
RA +RD +RE.

Finally, we assume for the network that the total rank (the sum of all the ranks) is one, so for
the sample system,

RA +RB +RC +RD +RE +RF = 1.

The current model has the problem that a surfer who ends up on a page with no external
links cannot go to a new page (e.g., page F). For those webpages we will assume that the surfer
will choose randomly from any page in the entire network. In other words, if the network
has N webpages, and webpage j has no links to any other webpages (so initially `jk = 0 for
k = 1, . . . , N ), then we will set `jk = 1 for each k. The total number of links then changes from
0 to N . For example, in the network shown above we reset `Fk = 1 for k ∈ {A,B,C,D,E,F},
so that nF = 6. The modified ranking formula for pages E and F are

RE =
1

2
RA +RB +RC +

1

6
RF, RF =

1

2
RA +RD +RE +

1

6
RF.

Note well that this modification does not change the requirement that the total rank is one.
The revised model still does not take into account that a websurfer might randomly select

a new webpage from the network instead of clicking on a link from the current page. We will
let 0 < d ≤ 1 (the damping factor) denote the probability that a websurfer uses a link on
the current page to get to the next page (1 − d is then the probability that a new page will be
randomly selected). If d = 1 the surfer uses only the links to go to the next webpage, and if d = 0
the links are never used to go to the next webpage. We will assume that the damping factor
is fixed and constant for all webpages. The possibility of randomly selecting a new webpage
effects the general ranking formula via

Rj 7→ dRj +
1− d
N

= dRj +
1− d
N

∑
k

Rk.

The latter equality follows from the total rank being one. Going back to the specific example,
the ranking formula for pages E and F are

RE = d

(
1

2
RA +RB +RC +

1

6
RF

)
+

1− d
6

(RA +RB +RC +RD +RE +RF)

RF = d

(
1

2
RA +RD +RE +

1

6
RF

)
+

1− d
6

(RA +RB +RC +RD +RE +RF) .
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For the project, consider the network of eight webpages given below:

1 432

5 876

Set r = (R1 R2 · · · R8)
T, where Rj is the rank of page j. Suppose that the damping factor is

d = 0.9.

(a) Find the matrix A ∈M8(R) such that Ar = r .
(b) Verify that the matrix has the properties that:

• all the entries are nonnegative
• the sum of the values in each column is one.

(c) Show (without using WolframAlpha or some other CAS) that λ = 1 is an eigenvalue of
A. (Hint: Exercise 1.14.12 and Exercise 1.14.13 may be helpful)

(d) Show that the system in (a) has a nonzero solution.
(e) The system can be numerically solved using an iterative method (this is preferred for

large networks). Set r0 = (1 0 · · · 0)T, and define the vectors r1, r2, . . . via

rn+1 = Arn.

Give an expression for rn in terms of the initial vector r0. Explain.
(f) Determine lim

n→+∞
rn. (Hint: it may be helpful to use some of the MATLAB commands

provided for in Chapter 1.15.3 to do the numerical calculations)
(g) Is the answer in part (e) a solution to the linear system of part (a)? Why, or why not?
(h) What is a value N such that if n ≥ N , then we can expect the difference between rn

and the solution to the linear system of part (a) to be O(10−4)? Describe how you chose
this value of N .

(i) Which webpage is most important, and what is its page rank?
(j) Which webpage is least important, and what is its page rank?

Author’s note: the preceding discussion, and facets of this project, were provided to me by Prof.
Kelly Mcquighan.

http://www.wolframalpha.com/
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ch:matlab
Here we briefly describe how to use each of the provided MATLAB functions, which are cur-
rently available at http://www.calvin.edu/∼tmk5/courses/m231/S14/. Moreover, the in-
terested reader can also find there a short MATLAB tutorial developed by Toby Driscoll. They
are easy to use; indeed, all that is required of the user is an understanding of how to input
matrices and vectors into MATLAB. Examples are included after each of the programs is briefly
described.

In order to use the below linear algebra programs it is only necessary that that the user
know how to enter a matrix and vector in MATLAB. The entries in each row are separated by
a comma, and each row is separated by a semi-colon. For example, if we have

A =

(
1 2 −3
−3 −6 7

)
, b =

 3
2
4


then they are entered in MATLAB via the command

>> A=[1,2,-3;-3,-6,7];

>> b=[3;2;4];

The semi-colon at the end of the line suppresses the output. If it is not present, then the entered
matrix is mirrored. The supplied individual functions are:

• cola: find a basis for the column space of a matrix A by using the command cola(A)

• deta: find the determinant of a matrix A by using the command deta(A)

• evalsa: find the eigenvalues and associated eigenvectors of a matrix A by using the
command evalsa(A)

• gaussa: find the row reduced echelon form (RREF) of a matrix A by using the command
gaussa(A)

• gaussab: find the RREF of the augmented matrix (A|b) by using the command gaussab(A,b)
• inva: find the inverse of a matrix A by using the command inva(A)

• nulla: find a basis for the null space of a matrix A by using the command nulla(A)

• zerop: find the zeros of a polynomial. The input is a row vector which contains the
coefficients of the given polynomial. For example, if the polynomial is

p(x) = 5x4 − 3x2 + 6x+ 8,

then the associated MATLAB commands are

129

http://www.calvin.edu/~tmk5/courses/m231/S14/
http://www.math.udel.edu/~driscoll/
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>> coef=[5,0,-3,6,8];

>> zerop(coef)

The MATLAB code for dfield8 and pplane8 was developed by John Polking of Rice Uni-
versity. This code is also available off Polking’s web site, and is provided here solely for the
sake of convenience.

• dfield8: numerically solves scalar ODEs x′ = f(t, x) for initial conditions which can
be either inputted via a keyboard, or via the click of a mouse

• pplane8: numerically solves autonomous planar ODEs x′ = f(x, y), y′ = g(x, y) for
initial conditions which can be either inputted via a keyboard, or via the click of a mouse.

C Example 1.15.1. Consider a linear system for which the coefficient matrix and nonhomoge-
neous term are

A =

 1 2 3
4 5 6
7 8 2

 , b =

−14
−7

 .

We will use the provided MATLAB function gaussab to put the augmented matrix into RREF. It
is straightforward to enter a matrix in MATLAB. The matrix entries are surrounded by square
brackets. The entries in each row are separated by a comma, and each row is separated by a
semi-colon. For this particular example we have the sequence of commands:

>> A=[1,2,3;4,5,6;7,8,2];

>> b=[-1;4;-7];

>> gaussab(A,b)

RREF of (A|b):

1.0000 0 0 6.6190

0 1.0000 0 -7.2381

0 0 1.0000 2.2857

In the first command line we entered the coefficient matrix A, and in the second command
line we enter the vector b . Ending each of these lines with a semi-colon suppresses the output;
otherwise, the matrix will be mirrored. Note that in the last command line there is no semi-
colon at the end. We interpret the output to say that the linear system is consistent, and the
unique solution is approximately

x ∼

 6.62
−7.24
2.29

 .

C Example 1.15.2. Consider the homogeneous linear system Ax = 0 , where

A =


3 4 7 −1
2 6 8 −4
−5 3 −2 −8
7 −2 5 9

 .

We will use the provided MATLAB command nulla to find a spanning set for Null(A). In
particular,

http://math.rice.edu/~polking/
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>> A=[3,4,7,-1;2,6,8,-4;-5,3,-2,-8;7,-2,5,9];

>> nulla(A)

Basis for Null(A):

-1 -1

-1 1

1 0

0 1

so that

Null(A) = Span{


−1
−1
1
0

 ,


−1
1
0
1

}.
C Example 1.15.3. Consider the linear system Ax = b , where

A =


3 4 −7 2
2 6 9 −2
−5 3 2 −13
7 −2 5 16

 , b =


5
27
11
−1

 .

We will use the provided MATLAB command nulla to find the homogeneous solution, and the
provided MATLAB command gaussab to find a particular solution. Regarding the null space
we have

>> A=[3,4,-7,2;2,6,9,-2;-5,3,2,-13;7,-2,5,16];

>> b=[5;27;11;-1];

>> nulla(A)

Basis for Null(A):

-2

1

0

1

so

Null(A) = Span{


−2
1
0
1

}.
The homogeneous solution is then

xh = t


−2
1
0
1

 , t ∈ R.

In order to find the particular solution we do not need to reenter the MATLAB expressions for
A and b , so we simply type
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>> gaussab(A,b)

RREF of (A|b):

1 0 0 2 0

0 1 0 -1 3

0 0 1 0 1

0 0 0 0 0

The particular solution is the last column of the RREF of (A|b), i.e.,

xp =


0
3
1
0

 .

C Example 1.15.4. We now consider an example for which a basis for Col(A) and Null(A)
are computed numerically. Here A ∈ R4×4 is given by

A =


1 2 3 4
−1 2 1 0
5 6 11 16
2 4 6 8

 ⇒ A = [1, 2, 3, 4;−1, 2, 1, 0; 5, 6, 11, 16; 2, 4, 6, 8];

Using the provided MATLAB function gaussa generates the output:
>> gaussa(A)

RREF of A:

1 0 1 2

0 1 1 1

0 0 0 0

0 0 0 0

From this RREF we see that rank(A) = 2, and dim[Null(A)] = 2. In order to numerically
generate a basis for the column space and null space we use the provided MATLAB functions
cola and nulla, respectively, to get:

>> cola(A)

Basis for Col(A):

1 2

-1 2

5 6

2 4

>> nulla(A)

Basis for Null(A):

-1 -2

-1 -1

1 0

0 1

As expected, we get as a basis for Col(A) the first two columns of A. As for the null space we
see that

Null(A) = Span{


−1
−1
1
0

 ,


−2
−1
0
1

}.
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C Example 1.15.5. We finally consider an example for which the inverse must be computed
numerically. Here A ∈ R3×3, and the calculation will be done using the provided MATLAB
function inva. Using this function for the matrix

A =

 1 2 3
−1 2 −3
5 6 7

 ⇒ A = [1, 2, 3;−1, 2,−3; 5, 6, 7];

generates the following output:

>> inva(A)

Inverse of A:

-1.0000 -0.1250 0.3750

0.2500 0.2500 0

0.5000 -0.1250 -0.1250

In other words, upon using the exact expressions for the numerical approximations we have

A−1 =
1

8

−8 −1 3
2 2 0
4 −1 −1

 .

It is straightforward to check that AA−1 = I 3.
C Example 1.15.6. We now calculate the determinant of a matrix using the provided MATLAB
function deta. Using this function for the matrix

A =

 1 2 3
−1 2 −3
5 6 7

 ⇒ A = [1, 2, 3;−1, 2,−3; 5, 6, 7];

we have the following output:

>> deta(A)

det(A): -32

In other words, det(A) = −32.
C Example 1.15.7. We finally consider an example for which the eigenvalues and eigenvectors
must be computed numerically. Here A ∈ R3×3, which means that pA(λ) is a third-order
polynomial. Unless the problem is very special, it is generally the case that it is not possible to
(easily) find the three roots. This calculation will be done using the provided MATLAB function
evalsa. Using this function for the matrix

A =

 1 2 3
−1 2 −3
5 6 7

 ⇒ A = [1, 2, 3;−1, 2,−3; 5, 6, 7];

we have the following output:
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>> evalsa(A)

Eigenvalues:

-0.8576 + 0.0000i 5.4288 + 2.8000i 5.4288 - 2.8000i

Eigenvectors:

-0.8830 + 0.0000i -0.2981 + 0.0209i -0.2981 - 0.0209i

0.1559 + 0.0000i 0.4467 - 0.3709i 0.4467 + 0.3709i

0.4428 + 0.0000i -0.7574 + 0.0000i -0.7574 + 0.0000i

In other words,

λ1 ∼ −0.86, v1 ∼

−0.880.16
0.44

 ; λ2 ∼ 5.43 + i2.80, v2 ∼

−0.300.45
−0.76

+ i

 0.02
−0.37
0.00

 .

The third eigenvalue is the complex-conjugate conjugate of the second, i.e., λ3 = λ2, and the
associated eigenvector is the complex-conjugate of v2, i.e., v3 = v2.
C Example 1.15.8. Let us find the general solution to the scalar ODE,

x′ = −x+ t− 4t3,

using the method of undetermined coefficients. Since f(t) = t − 4t3, which is a third-order
polynomial, we will guess the particular solution to be

xp(t) = a0 + a1t+ a2t
2 + a3t

3.

Plugging this guess into the ODE yields

a1 + 2a2t+ 3a3t
2︸ ︷︷ ︸

x′p

= −(a0 + a1t+ a2t
2 + a3t

3)︸ ︷︷ ︸
−xp

+t− 4t3,

which can be rewritten as

a0 + a1 + (a1 + 2a2 − 1)t+ (a2 + 3a3)t
2 + (a3 + 4)t3 = 0.

Since a polynomial can be identically zero if and only all of its coefficients are zero, we then get
the linear system of equations

a0 + a1 = 0, a1 + 2a2 − 1 = 0, a2 + 3a3 = 0, a3 + 4 = 0,

which can be rewritten in matrix form as
1 1 0 0
0 1 2 0
0 0 1 3
0 0 0 1

a =


0
1
0
−4

 , a =


a0
a1
a2
a3

 .

We use the provided MATLAB function gaussab to solve the linear system via the sequence of
commands
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>> A=[1,1,0,0;0,1,2,0;0,0,1,3;0,0,0,1];

>> b=[0,1,0,-4];

>> gaussab(A,b)

RREF of (A|b):

1 0 0 0 23

0 1 0 0 -23

0 0 1 0 12

0 0 0 1 -4

We conclude

a =


23
−23
12
−4

 ,

so the particular solution is
xp(t) = 23− 23t+ 12t2 − 4t3.

The general solution is
x(t) = ce−t + 23− 23t+ 12t2 − 4t3.

C Example 1.15.9. Consider the third-order ODE

y′′′ − 3y′′ + 6y′ + 9y = 0.

The associated characteristic polynomial is

p(λ) = λ3 − 3λ2 + 6λ+ 9.

The roots cannot easily be found analytically. However, they can be found numerically using
the provided MATLAB function zerop. In general, if the characteristic polynomial is

p(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0,

the roots of the polynomial are found by first putting the coefficients into a row vector, and then
calling the command. For our particular example, the sequence of commands

>> coef=[1,-3,6,9];

>> zerop(coef)

Roots:

-4.6890 + 0.0000i 0.8445 + 1.0983i 0.8445 - 1.0983i

reveals the three roots to be

λ1 ∼ −4.69, λ2 ∼ 0.84 + i1.10, λ3 ∼ 0.84− i1.10.

Since the roots must come in complex-conjugate pairs, we know the first root is purely real.
The general solution is

y(t) = c1e
−4.69t + c2e

0.84t cos(1.10t) + c3e
0.84t sin(1.10t).





Answers to selected exercises

Chapter 1
1.1.3 (b) r = 8.

1.1.7 No. There are at least two free variables, so there will always be an infinite number of
solutions.

1.2.1 (c) The product is not well-defined.

1.2.5 b = t

(
1
−3

)
for any t ∈ R.

1.3.2 5x1 + 2x2 = 0.

1.3.6 (e) NO. The weights are x1 = 3, x2 = −2, x3 = −1.

1.4.1 (d) Span{
(
−2
1

)
}.

1.4.5 (b) xh = t

−24
1

 for any t ∈ R, and xp =

−32
0

.

1.5.1 (a) NO. The presence of a zero row in the RREF of A means the linear system will not
always be consistent (see Theorem 1.6.3).

1.5.5 (b) r = −19.

1.5.9 (c) FALSE. Since the null space is nontrivial, there is a nonzero solution to Ax = 0 ,
which means that some linear combination of the columns leads to the zero vector.

1.6.2 NO. The zero vector is not contained in the set.

1.7.1 (c) rank(A) = 3 and dim[Null(A)] = 1.

1.7.5 NO. Since dim[R6] = 6, a basis for R6 requires six vectors.

1.7.7 (b) FALSE. The seven vectors must be in R7.

1.8.6 (b) cos θ = 15/
√
17 · 66.

1.8.15 (b) 1
2
cos(x)− 1

2
cos(3x).

137



138 Answers to selected exercises

1.9.1 (e)
(

1 −31
−17 −26

)
.

1.9.2 (b) k = m, and BA ∈ Rn×n.

1.9.14 (b) FALSE. While the size of AB and BA are the same, the equality will not always
hold since matrix multiplication generally does not commute.

1.10.1 (b) The inverse does not exist.

1.10.3 The solution to Ax = b1 is x =
1

23

(
−12
37

)
.

1.10.6 (e) FALSE. Since the matrix is invertible, the RREF is the identity matrix, which means
that all of the columns are pivot columns, and hence are linearly independent.

1.11.1 (c) det(A) = −4, and det(A−1) = −1/4.

1.11.10 (b) FALSE. Since there is a unique solution for any b , the matrix is invertible, which
means det(A) 6= 0.

1.12.2 (d) z =
√
37 eiθ , where tan θ = 1/6.

1.12.5 (a) Null(A) = Span{
(
−4 + i6

1

)
}, and dim[Null(A)] = 1.

1.13.2 (c) λ1 = −1 with v1 =

(
2
1

)
, and λ2 = −4 with v2 =

(
1
1

)
.

1.13.5 (c) Using the eigenvectors given in Problem 1.13.2(c), x = 7v1 − 10v2.

1.13.8 (b) FALSE. The eigenvalues can be complex-valued with nonzero imaginary part.

1.14.1 (a) lim
n→+∞

Cn =
5

7
(2500) ∼ 1786, and lim

n→+∞
Sn =

2

7
(2500) ∼ 714.

1.14.4 (b) Approximately 4.6%.

1.14.7 (a) Approximately 4.7%.

Chapter 2
2.1.2 (a) x′ = −ax, where a = − ln(2)/5370.

2.3.1 (a) x(t) = ce3t + cos2(7t) + t2 − 6e5t.

2.4.1 (a) x(t) = cet−t
2/2.

2.5.2 (c) x(t) = (t2 − 2t+ 2)et − e + 4

t2
.

2.5.4 (c) xp(t) = t(a0 + a1t+ a2t
2 + a3t

3)e−t.

2.6.4 t ∼ 643.78 days.

2.6.10 r ∼ 0.012.

Chapter 3
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3.1.2 x ′ =

(
−6/200 1/250
2/200 −9/250

)
x +

(
25 + 5 cos(2t)
63 + 14e−2t

)
, x (0) =

(
1400
225

)
.

3.2.1 (d) x ′ =

 0 1)0
0 0 1
−2 −5 8

x +

 0
0
7t

 .

3.3.1 (a) Φ(t) =

(
et e−3t

et −3e−3t
)
.

3.5.3 (a) The origin is a stable node.

3.5.6 (c) The origin is an unstable saddle point.

3.5.10 (a) x (t) = c1e
−2t
(
1
5

)
+ c2e

2t

(
1
1

)
.

3.5.16 (a) The origin is an unstable node.

3.6.3 x (t) = c1e
t

(
2
1

)
+ c2e

3t

(
0
1

)
+ e2t

(
1
2

)
.

3.6.11 xp(t) = 23te2t
(
1
3

)
+

19

2
e2t
(
1
4

)
.

3.7.2 (a) x ′ =
(
−15/100 10/100

5/100 −15/100

)
x +

(
5c1
10c2

)
; x (0) =

(
40
50

)
.

3.7.5 (a) Approximately 15.79% are susceptible, 0.02% are infected, and 84.18% are recovered
or immune.

Chapter 4
4.1.3 (d) y(t) = c1e

3t + c2e
6t.

4.1.5 (a) The ODE is fourth-order, and y(t) = c1e
t + c2e

−3t + c3te
−3t + c4e

5t.

4.2.1 (c) y = c1e
−2t + c2e

−5t + 2te−2t.

4.2.3 (a) yp(t) = t2(a0 + a1t)e
−t + a2 cos(2t) + a3 sin(2t).

4.2.5 (a) yp(t) = t2(a0 + a1t+ a2t
2)et.

4.2.6 (c) y(t) = c1t+ c2t
2 + t2 tan−1(t)− 1

2
t ln(1 + t2).

4.2.8 (e) y(t) = c1 cos(3 ln(t)) + c2 sin(3 ln(t)).

4.2.9 (c) y(t) = c1
t
+
c2
t2
− 9

4
+

3

2
ln(t).

4.4.2 (a) y1(t) =
1

2
A (cos(ωnt) + cos(ωct)) +

1

2
B

(
sin(ωnt)

ωn
+

sin(ωct)

ωc

)
and

y2(t) =
1

2
A (cos(ωnt)− cos(ωct)) +

1

2
B

(
sin(ωnt)

ωn
− sin(ωct)

ωc

)
.

Chapter 5
5.1.1 (b) f(t) = t2 +

(
4et − t2

)
H(t− 2) + (6− 4et)H(t− 5).
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5.3.2 (d) L[f ](s) = − 4

(s+ 3)2
+ 6

e−s

s
+

4

s
− 8

s2
.

5.3.3 (f) f(t) =
(
2e−2(t−3) cos(3(t− 3))− 7

3
e−2(t−3) sin(3(t− 3))

)
H(t− 3).

5.4.1 (e) yp(t) =
3

29

(
1− e2(t−2) cos(5(t− 2)) +

2

5
e2(t−2) sin(5(t− 2))

)
H(t− 2).

5.4.2 (b) yp(t) = −
5

3
e−4t cos(2t)− 1

3
e−4t sin(2t) + 2e−4(t−3) sin(2(t− 3))H(t− 3)

−6e−4(t−5) sin(2(t− 5))H(t− 5).

5.5.3 a = 1 + kπ for k = 1, 2, 3, . . . .

5.6.1 (c) H(s) =
[
s2 + 8s+ 12

]−1.

5.6.2 (d) yp(t) =
∫ t
0

(
e3(t−u) − e2(t−u)

)
f(u) du.

5.6.4 (b) y′′ + 2y′ + 5y = f(t).

Chapter 6
6.1.1 (c) x(t) = ln (C + et).

6.2.1 (d) x = 0 is stable, x = ±1 are unstable, and x = 3 is semi-stable.

6.4.1 (b) The recursion relationship is aj+1 = aj + 8. The solution is a0
∞∑
j=0

1

j!
tj + 8

∞∑
j=1

bjt
j ,

where b1 = 1, b2 = 1, b3 = 2/3, b4 = 5/12, . . . .
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complex-conjugate, 94
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over, 262
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delta function, 275
determinant, 88, 89
dimension, 55
direction field, 134
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eigenvalue, 99
algebraic multiplicity, 101
geometric multiplicity, 101
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simple, 101

eigenvector, 99
equilibrium solution, 184
Euler’s formula, 95

Fourier coefficients, 65
Fourier expansion, 65
Fredholm alternative, 78
free variable, 15

Gaussian elimination, 13
Gram-Schmidt procedure, 69

Heaviside function, 275
Hermite
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polynomial, 331

impulse response, 303
initial value problem, 132
inner-product, 61

Laplace transform, 279
leading entry, 13
least-squares solution, 81
left nullspace, 76
Legendre

equation, 331
polynomial, 331

linear combination, 18
linearly dependent, 29
linearly independent, 29
logistic equation, 316
lower triangular matrix, 93

Markov process, 113
matrix

augmented, 13
companion, 235
identity, 12
inverse, 83
skew-symmetric, 82
spectral decomposition, 108
symmetric, 82
transpose, 75

matrix-valued solution, 179
matrix/matrix multiplication, 23
matrix/vector multiplication, 20
method of undetermined coefficients, 151
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natural frequency, 252
null space, 35
numerical method

Dormand-Prince, 140
Euler, 138
improved Euler, 139
Runge-Kutta, 139

orthogonal projection, 74
orthogonal vectors, 63
orthonormal basis, 64

Parseval’s equality, 65
phase

line, 315
plane, 185

pivot column, 13
pivot position, 13
poles, 304

rank, 56
residual, 74, 80
resonant forcing, 256
row reduced echelon form, 13

row space, 76

saddle point, 187
separable, 311
separation of variables, 268
singular perturbations, 299
span, 26
spanning set, 27
stable node, 189
stable spiral, 194
state-space model, 126
Sturm-Liouville problem, 124
subspace, 48

transfer function, 301
transient, 264

unstable node, 191
unstable spiral, 194
upper triangular matrix, 93

variation of parameters, 148, 244

Wronskian, 182


