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The purpose of these notes is to present some of the notions of linear algebra that are
necessary for the study of systems of linear first-order differential equations. These notes are
not to be thought of as a comprehensive presentation of linear algebra, itself quite a broad
subject area, nor are those results from linear algebra discussed here accompanied by proofs.
Neither do I assert that these notes would serve equally well as the foundation for studying
systems of ODEs in all courses and in conjunction with all texts. Rather, this unit has been
written as a supplement to the text Elementary Differential Equations, 6th Edition by Boyce
and DiPrima.

1 Matrices and Vectors

An m× n matrix is an array (or table) of entries consisting of m rows and n columns. The
symbolMm×n(R) will be used to denote the set of all m×n matrices whose entries are real
numbers, while Mm×n(C) will denote the m × n matrices with entries which are complex
numbers. Thus 2 0

−1 5
3 0

 , [
−1 3 7

]
,

 −i 3 + 2i 7 + 2i
−1 4− i −1 + i
0 0 −2i


are elements in M3×2(R), M1×3(R) and M3×3(C) respectively. Of course, it may also be
said that the first two of these are in M3×2(C), M1×3(C), respectively, since the set of real
numbers is contained in the set of complex numbers.

We may multiply a matrix by a number (or scalar) in the following way. Three times the
first matrix above is defined to be

3

 2 0
−1 5
3 0

 :=

 6 0
−3 15
9 0

 ,
while i times the last of them is

i

 −i 3 + 2i 7 + 2i
−1 4− i −1 + i
0 0 −2i

 :=

 1 −2 + 3i −2 + 7i
−i 1 + 4i −1− i
0 0 2

 .
This process is called scalar multiplication. Our scalar may even be a function, so that

e−3t

[
−6 1
2 1

]
:=

[
−6e−3t e−3t

2e−3t e−3t

]
.

We may also add and subtract two matrices, as long as they have the same number of
rows and columns. In such a case we define the sum of two matrices to be the sum of its
individual elements, as in [

−6 1
2 1

]
+

[
3 0
−1 5

]
:=

[
−3 1
1 6

]
.
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The difference of two matrices is defined similarly, so that[
2 3− i 0

1 + i 7i 6 + 2i

]
−
[
−6i −3− i 2 + i

0 2i 1 + i

]
:=

[
2 + 6i 6 −2− i
1 + i 5i 5 + i

]
.

Notice that, based upon these definitions for addition and subtraction, it is reasonable to call
the m×n matrix whose entries are all zeros an additive identity forMm×n(R) (orMm×n(C)),
since adding it to any matrix A ∈Mm×n(R) results in a sum equal to A.

It is customary to refer to elements inMm×n(R) (orMm×n(C)) by single, boldface capital
letters such as A. Nevertheless, we must keep in mind that A is a table of entries

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .
Here the entry of A in the ith-row, jth-column is denoted by aij. If this is how we wish to
refer to the entries of A, often we say so by indicating that A = (aij). Thus, the statement
B = (bij) means that we intend to refer to the entry of B found in the ith-row, jth-column
as bij.

If we rewrite an m× n-matrix with all of its columns now written as rows, we get a new
n×m matrix called the transpose matrix. Thus, if

A =

 2 −1
0 4
1 −3

 ,
then its transpose matrix AT is

AT =

[
2 0 1
−1 4 −3

]
.

Matrices that have only one column are usually referred to as vectors. While vectors
are simply special matrices, it is customary to use lower-case letters in naming them, rather
than upper-case. An arbitrary n-vector v takes the form

v =


v1

v2
...
vn

 .
Of course, it may be convenient to display a vector horizontally (as a 1× n matrix) instead
of vertically. Literally speaking, this “row” format is the transpose of the column format we
listed above, and we should write

vT =
[
v1 v2 · · · vn

]
.
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In what follows, you will often see

v = (v1, v2, . . . , vn).

By this, we mean that we are still talking about the column vector (notice it is denoted as
v and not vT ), but wish not to take up as much space on the page as would be required
if we wrote it in column format. In these cases, the commas will also assist in making the
distinction.

We define the dot product of two n-vectors

u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn)

to be

u · v := u1v1 + u2v2 + · · ·+ unvn =
n∑

j=1

ujvj.

Notice that for this definition to make sense it is necessary that the two vectors have the
same number of elements. Thus

(2, 4,−1, 0) ·


−1
5
0
3

 = (2)(−1) + (4)(5) + (−1)(0) + (0)(3) = 18.

While it may seem odd that the first vector in the example above was written in row
format and the second in column format, we did this because this leads to the way we wish
to define multiplication between matrices. When we multiply two matrices, the product is a
matrix whose elements arise from dot products between the rows of the first (matrix) factor
and columns of the second. An immediate consequence of this: if A and B are matrices, the
product AB makes sense precisely when the number of columns in A is equal to the number
of rows in B. To be clearer about how such a matrix product is achieved, suppose A is an
m× n matrix while B is an n× p matrix. If we write

A =


r1 →
r2 →
...

rm →

 and B =

[
c1 c2 · · · cp

↓ ↓ ↓

]
,

with each of the rows ri of A (considered as column vectors) having n components and
likewise each of the columns cj of B, then their product is an m× p matrix whose entry in
the ith-row, jth-column is obtained by taking the dot product of ri with cj. Thus if

A =


2 −1
0 3
−5 1
7 −4

 and B =

[
3 1 0
−2 4 10

]
,
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then the product AB will be the 4× 3 matrix

AB =



(2,−1) ·
[

3
−2

]
(2,−1) ·

[
1
4

]
(2,−1) ·

[
0
10

]
(0, 3) ·

[
3
−2

]
(0, 3) ·

[
1
4

]
(0, 3) ·

[
0
10

]
(−5, 1) ·

[
3
−2

]
(−5, 1) ·

[
1
4

]
(−5, 1) ·

[
0
10

]
(7,−4) ·

[
3
−2

]
(7,−4) ·

[
1
4

]
(7,−4) ·

[
0
10

]



=


8 −2 −10
−6 12 30
−17 −1 10
29 −9 −40

 .
Notice that if A ∈M2×4(R) and B ∈M4×3(R) then the product AB is defined, but the

product BA is not. This is because the number of columns in B is unequal to the number of
rows in A. Thus, for it to be possible to multiply two matrices, one of which is inMm×n(R),
in either order, it is necessary that the other be in Mn×m(R). In particular, the products
CD and DC are well-defined (though, in general, not equal) if C and D are both square
of the same dimension — that is, both are in Mn×n(R). It is interesting to note that the
matrix

In :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


is a multiplicative identity for Mn×n(R); that is, given any matrix C ∈Mn×n(R),

CIn = InC = C.

Our method for defining products of matrices lends itself well to writing algebraic systems
of linear equations as matrix equations. Consider the system of equations

2x+ 5y = 11

7x− y = −1.

We can think of the solution (x, y) of this system as a point of intersection between two
lines. The matrix equation [

2 5
7 −1

] [
x
y

]
=

[
11
−1

]
expresses the exact same equations as appear in the system. Its solution is the vector

[
x
y

]
whose entries match the x and y coordinates for the point of intersection.
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2 Gaussian Elimination: A New Spin on the Solution

of n Linear Equations in n Unknowns

By now systems of two equations in two variables are quite familiar to us. We have studied
them in practically every mathematics course prior to the Calculus. We have been taught
to find solutions of such systems via elimination or substitution, and we understand these
solutions to be points of intersection between two graphs. In particular, when the two
equations are linear in two variables,

ax+ by = c

αx+ βy = γ.

the solution(s) (assuming there are any) are points of intersection between two lines. The
solution(s) of three linear equations

a11x+ a12y + a13z = b1

a21x+ a22y + a33z = b2

a31x+ a32y + a33z = b3

correspond to points of intersection of three planes.

Example: Let us explore the method of elimination and see how we might carry it out using
matrices. Consider, for example, the problem of finding intersections between the two lines:

2x− 3y = 7
3x+ 5y = 1

or, in matrix form

[
2 −3
3 5

] [
x
y

]
=

[
7
1

]
.

We have the sense that, with two unknowns x and y, two equations are enough to determine
their values. The method of elimination taught in elementary algebra courses goes as follows.
In each step, we write what a high-school algebra student might write, and then a matrix
formulation of the same set of equations.

Step 1. Leaving the top equation alone, we multiply through the bottom one by (-2/3):

2x− 3y = 7
−2x− (10/3)y = −2/3.

matrix form:

[
2 −3
−2 −10/3

] [
x
y

]
=

[
7
−2/3

]
.

Step 2. We add the two equations, eliminating the x term. (Of course, we could have performed
Step 1 differently so that, after this step, the y terms have been eliminated.) What has
always been tacitly assumed (but perhaps not overtly mentioned) is that our previous
equations do not get thrown away. (We always return to at least one of them once
we know the value of y so as to get the value of x.) Nevertheless, as we accumulate
more equations (the original two, the “rescaled” version of the second equation and,
now, another one resulting from adding the previous two), we have the sense that the
problem still has the same number of degrees of freedom (the unknowns) and the same
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number of constraints (equations) as it had when we began. The new equations do not
add new information over what was built into the original problem (i.e., they do not
change the solutions in any way). Thus, along with the equation we get by adding the
previous two, we carry forward the first equation once again:

2x− 3y = 7
−(19/3)y = 19/3

matrix form:

[
2 −3
0 −19/3

] [
x
y

]
=

[
7

19/3

]
.

Step 3. Now that the x-term has been eliminated in the second equation, we may get the value
of y by dividing this equation by (-19/3):

2x− 3y = 7
y = −1

matrix form:

[
2 −3
0 1

] [
x
y

]
=

[
7
−1

]
.

Step 4. At some stage we probably divide through the first equation by 2 making it easier to
determine the x value from the (now known) y value.

x− (3/2)y = 7/2
y = −1

matrix form:

[
1 −3/2
0 1

] [
x
y

]
=

[
7/2
−1

]
.

Gaussian elimination is a method for solving systems of linear equations which carries
out the same process as above, keeping track only of what happens to the coefficient matrix
and the vector on the right-hand side. It may appear strange at first look, but compare the
following string of matrices to those which appeared above. (These matrices are not equal,
so we do not use the symbol “=” between them. Nevertheless, they do represent equivalent
systems of linear equations — ones that have the same point(s) of intersection. The symbol
∼ indicates this.)

(augmented matrix)

[
2 −3
3 5

∣∣∣∣ 7
1

]
∼

[
2 −3
−2 −10/3

∣∣∣∣ 7
−2/3

]
∼

[
2 −3
0 −19/3

∣∣∣∣ 7
19/3

]
∼

[
2 −3
0 1

∣∣∣∣ 7
−1

]
∼

[
1 −3/2
0 1

∣∣∣∣ 7/2
−1

]
. (row echelon form)

One carries out Gaussian elimination generally with the goal in mind to arrive at a final
matrix which has, to the left of the “divider”, a stair-step appearance, known as row-echelon
form:

In each row the leading (nonzero) number is a 1, and the leading 1 in the next
row appears in a column farther to the right than in the current row.

Check that the “augmented matrix” (the matrix we got by adding a divider and the right-
hand vector to the original coefficient matrix) in the above example has been processed until

6



it fits this description. Notice that, from this row-echelon form, we can easily get the values
of x and y:

y = −1, and x = 7/2 + (3/2)(−1) = 2.

If row-echelon form is the goal, what operations are we allowed to perform to get there?
They are exact analogs for the kinds of operations we might perform on a system of equations:

(i) Exchange two rows.

(ii) Multiply a row by a nonzero number.

(iii) Add a multiple of one row to another, replacing the latter row with the result.

Example: Use Gaussian elimination to solve the system of equations (representing three
planes)

−3y + z = 1

x+ 3z = −1

2x− y + 4z = 0.

First we form the augmented matrix. Then, we perform row operations as described at right
to reduce to row-echelon form. 0 −3 1

1 0 3
2 −1 4

∣∣∣∣∣∣
1
−1
0

 r1 ↔ r2

∼

 1 0 3
0 −3 1
2 −1 4

∣∣∣∣∣∣
−1
1
0

 (i.e., we exchange r1 and r2)

−2r1 + r3 → r3

∼

 1 0 3
0 −3 1
0 −1 −2

∣∣∣∣∣∣
−1
1
2

 (i.e., replace r3 with −2r1 + r3)

(−r3)→ r3

∼

 1 0 3
0 −3 1
0 1 2

∣∣∣∣∣∣
−1
1
−2

 (i.e., replace r3 by (−r3))

r2 ↔ r3

∼

 1 0 3
0 1 2
0 −3 1

∣∣∣∣∣∣
−1
−2
1


3r2 + r3 → r3

∼

 1 0 3
0 1 2
0 0 7

∣∣∣∣∣∣
−1
−2
−5


(1/7)r3 → r3

∼

 1 0 3
0 1 2
0 0 1

∣∣∣∣∣∣
−1
−2
−5/7

 .
The last of these is in row-echelon form. From this we get that

z = −5/7
y = −2− (2)(−5/7) = −4/7
x = −1− (3)(−5/7) = 8/7.

The point (−5/7,−4/7, 8/7) is the (only) point of intersection between the three planes.
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3 Determinants and the Solvability of Linear Systems

In the last section we learned how to use Gaussian elimination to solve linear systems of n
equations in n unknowns. The section completely side-stepped one important question: that
of whether a system has a solution and, if so, whether it is unique.

Consider the case of two lines in the plane

ax+ by = e
cx+ dy = f.

(1)

In fact, we know that intersections between two lines can happen in any of three different
ways:

1. the lines intersect at a unique point (i.e., solution exists and is unique),

2. the lines are coincident (that is, the equations represent the same line and there are
infinitely many points of intersection; in this case a solution exists, but is not unique),
or

3. the lines are parallel but not coincident (so that no solution exists).

Experience has taught us that it is quite easy to decide which of these situations we are
in before ever attempting to solve a linear system of two equations in two unknowns. For
instance, the system

3x− 5y = 9

−5x+
25

3
y = −15

obviously contains two representations of the same line (since one equation is a constant
multiple of the other) and will have infinitely many solutions. In contrast, the system

x+ 2y = −1

2x+ 4y = 5

will have no solutions. This is the case because, while the left sides of each equation — the
sides that contain the coefficients of x and y which determine the slopes of the lines — are
in proportion to one another, the right sides are not in the same proportion. As a result,
these two lines will have the same slopes but not the same y-intercepts. Finally, the system

2x+ 5y = 11

7x− y = −1.

will have just one solution (one point of intersection), as the left sides of the equations are
not at all in proportion to one another.

What is most important about the preceding discussion is that we can distinguish situ-
ation 1 (the lines intersecting at one unique point) from the others simply by looking at the
coefficients a, b, c and d from equation (1). In particular, we can determine the ratios a : c
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and b : d and determine whether these ratios are the same or different. Equivalently, we can
look at whether the quantity

ad− bc
is zero or not. If ad − bc 6= 0 then the system has one unique point of intersection, but if
ad− bc = 0 then the system either has no points or infinitely many points of intersection. If
we write equation (1) as a matrix equation[

a b
c d

] [
x
y

]
=

[
e
f

]
,

we see that the quantity ad − bc is dependent only upon the coefficient matrix. Since this
quantity “determines” whether or not the system has a unique solution, it is called the
determinant of the coefficient matrix

A =

[
a b
c d

]
,

and is sometimes abbreviated as det(A), |A| or∣∣∣∣ a b
c d

∣∣∣∣ .
While it is quite easy for us to determine in advance the number of solutions which arise

from a system of two linear equations in two unknowns, the situation becomes a good deal
more complicated if we add another variable and another equation. The solutions of such a
system

ax+ by + cz = l

dx+ ey + fz = m (2)

ex+ hy + kz = n

can be thought of as points of intersection between three planes. Again, there are several
possibilities:

1. the planes intersect at a unique point,

2. the planes intersect along a line,

3. the planes intersect in a plane, or

4. the planes do not intersect.

It seems reasonable to think that situation 1 can once again be distinguished from the other
three simply by performing some test on the numbers a, b, c, d, e, f, g, h and k. As in the case
of the system (1), perhaps if we write system (2) as the matrix equation a b c

d e f
g h k

 x
y
z

 =

 l
m
n

 ,
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we will be able to define an appropriate quantity det(A) that depends only on the coefficient
matrix

A =

 a b c
d e f
g h k


in such a way that, if det(A) 6= 0 then the system has a unique solution (situation 1), but if
det(A) = 0 then one of the other situations (2–4) is in effect.

Indeed it is possible to define det(A) for a square matrix A of arbitrary dimension. For
our purposes, we do not so much wish to give a rigorous definition of such a determinant as
we do wish to be able to find it. As of now, we do know how to find it for a 2× 2 matrix:

det

[
a11 a12

a21 a22

]
=

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21.

For square matrices of dimension larger than 2 we will find the determinant using cofactor
expansion.

Let A = (aij) be an arbitrary n× n matrix; that is,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .
We define the (i, j)-minor of A, Mij, to be the determinant of the matrix resulting from
crossing out the ith row and the jth column of A. Thus, if

B =

 1 −4 3
−3 2 5
4 0 −1

 ,
we have nine possible minors Mij of B, two of which are

M21 =

∣∣∣∣ −4 3
0 −1

∣∣∣∣ = 4 and M33 =

∣∣∣∣ 1 −4
−3 2

∣∣∣∣ = −10.

A concept that is related to the (i, j)-minor is the (i, j)-cofactor, Cij, which is defined to be

Cij := (−1)i+jMij.

Thus, the matrix B above has 9 cofactors Cij, two of which are

C21 = (−1)2+1M21 = −4 and C33 = (−1)3+3M33 = −10.

Armed with the concept of cofactors, we are prepared to say how the determinant of an
arbitrary square matrix A = (aij) is found. It may be found by expanding in cofactors along
the ith row:

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin =
n∑

k=1

aikCik;
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or, alternatively, it may be found by expanding in cofactors along the jth column:

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj =
n∑

k=1

akjCkj.

Thus, det(B) for the 3× 3 matrix B above is

det(B) =

∣∣∣∣∣∣
1 −4 3
−3 2 5
4 0 −1

∣∣∣∣∣∣ = 4(−1)3+1

∣∣∣∣ −4 3
2 5

∣∣∣∣
+(0)(−1)3+2

∣∣∣∣ 1 3
−3 5

∣∣∣∣+ (−1)(−1)3+3

∣∣∣∣ 1 −4
−3 2

∣∣∣∣
= 4(−20− 6) + 0− (2− 12)

= −94.

Here we found det(B) via a cofactor expansion along the third row. You should verify that a
cofactor expansion along any of the other two rows would also lead to the same result. Had
we expanded in cofactors along one of the columns, for instance column 2, we would have

det(B) = (−4)(−1)1+2

∣∣∣∣ −3 5
4 −1

∣∣∣∣+ (2)(−1)2+2

∣∣∣∣ 1 3
4 −1

∣∣∣∣+ (0)(−1)3+2

∣∣∣∣ 1 3
−3 5

∣∣∣∣
= 4(3− 20) + 2(−1− 12) + 0

= −94.

This process can be used iteratively on larger square matrices. For instance∣∣∣∣∣∣∣∣
3 1 2 0
−1 0 5 −4
1 1 0 −1
0 0 −3 1

∣∣∣∣∣∣∣∣ = (0)(−1)4+1

∣∣∣∣∣∣
1 2 0
0 5 −4
1 0 −1

∣∣∣∣∣∣+ (0)(−1)4+2

∣∣∣∣∣∣
3 2 0
−1 5 −4
1 0 −1

∣∣∣∣∣∣
+(−3)(−1)4+3

∣∣∣∣∣∣
3 1 0
−1 0 −4
1 1 −1

∣∣∣∣∣∣+ (1)(−1)4+4

∣∣∣∣∣∣
3 1 2
−1 0 5
1 1 0

∣∣∣∣∣∣ ,
where our cofactor expansion of the original determinant of a 4× 4 matrix along its fourth
row expresses it in terms of the determinants of several 3× 3 matrices. We may proceed to
find these latter determinants using cofactor expansions as well:∣∣∣∣∣∣

3 1 0
−1 0 −4
1 1 −1

∣∣∣∣∣∣ = (3)(−1)1+1

∣∣∣∣ 0 −4
1 −1

∣∣∣∣+ (1)(−1)1+2

∣∣∣∣ −1 −4
1 −1

∣∣∣∣+ (0)(−1)1+3

∣∣∣∣ −1 0
1 1

∣∣∣∣
= 3(0 + 4)− (1 + 4) + 0

= 7,
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where we expanded in cofactors along the first row, and∣∣∣∣∣∣
3 1 2
−1 0 5
1 1 0

∣∣∣∣∣∣ = (1)(−1)1+2

∣∣∣∣ −1 5
1 0

∣∣∣∣+ (0)(−1)2+2

∣∣∣∣ 3 2
1 0

∣∣∣∣+ (1)(−1)3+2

∣∣∣∣ 3 2
−1 5

∣∣∣∣
= −(0− 5) + 0− (15 + 2)

= −12,

where this cofactor expansion was carried out along the second column. Thus∣∣∣∣∣∣∣∣
3 1 2 0
−1 0 5 −4
1 1 0 −1
0 0 −3 1

∣∣∣∣∣∣∣∣ = 0 + 0 + (3)(7) + (1)(−12) = 9.

The matrices whose determinants we computed in the preceding paragraph are the coef-
ficient matrices for the two linear systems

x1 − 4x2 + 3x3 = b1

−3x1 + 2x2 + 5x3 = b2

4x1 − x3 = b3

and

3x1 + x2 + 2x3 = b1

−x1 + 5x3 − 4x4 = b2

x1 + x2 − x4 = b3

−3x3 + x4 = b4

respectively; that is, if we write each of these systems as a matrix equation of the form
Ax = b, with

x =

 x1

x2
...

 and b =

 b1
b2
...

 ,
then the coefficient matrix A in each case is one for which we have already computed the
determinant and found it to be nonzero. This means that no matter what values are used
for b1, b2, b3 (and b4 in the latter system) there is exactly one solution for the unknown vector
x.

4 Linear Independence and Span

We define vectors as being linearly independent in the same way we defined linear indepen-
dence for functions on an interval. Given a collection of n-vectors {v1,v2, . . .vk}, we say
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that this collection is linearly dependent if there are constants c1, c2, . . . , ck not all of which
are zero such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

Here the cjvj represent scalar multiples of the vj for j = 1, 2, . . . , k, and the expression

c1v1 + c2v2 + · · ·+ clvk

is called a linear combination of the vectors v1,v2, . . . ,vk. Clearly we can get 0 to be a
linear combination of v1,v2, . . . ,vk by taking c1 = c2 = · · · = ck = 0. If this is the only
linear combination that results in 0, then the vectors v1,v2, . . . ,vk are said to be linearly
independent.

Example: The 2-vectors e1 =

[
1
0

]
and e2 =

[
0
1

]
are linearly independent.

To see this, we suppose that we have a linear combination c1e1 + c2e2 = 0; that
is,

c1

[
1
0

]
+ c2

[
0
1

]
=

[
c1
c2

]
is equal to

[
0
0

]
. Then clearly c1 = 0 and c2 = 0. There are no other possible

values for c1 and c2.

Example: The set of three 2-vectors {e1, e2,v}, where e1 and e2 are the same as in the
last example and v is any other 2-vector, is linearly dependent.

To show this, we really need to consider two cases. The first case is the more
trivial case, where the vector v is the zero vector — the 2-vector whose entries
are both zero. In this case, we get c1e1 + c2e2 + c3v = 0 by taking c1 = 0, c2 = 0
and c3 6= 0.

In the other case, where v is not the zero vector, let v = (v1 v2)
T where, as

we have assumed, not both of the entries are zero. Taking c1 = −v1, c2 = −v2

and c3 = 1 we again get that c1e1 + c2e2 + c3v = 0.

What the last two examples show is that the set of vectors {e1, e2} is linearly independent,
but if this set is augmented with any additional 2-vector the set becomes linearly dependent.
The reason for this is that all 2-vectors can be written as linear combinations of e1 and e2.
Another way to say this is to say that the set {e1, e2} spans the set of 2-vectors, or that
every 2-vector is in span{e1, e2}. It is easy to show that other sets of 2-vectors, such as
{(1, 1), (1,−1)} for instance, are linearly independent and span the set of 2-vectors.

Example: Characterize the vectors that are in span{(1, 0, 1), (0, 1, 0)}, and propose a 3-
vector v which, when joined to the set above, forms a set that is linearly independent.
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The span of {(1, 0, 1), (0, 1, 0)} is the set of all linear combinations of the form

c1(1, 0, 1) + c2(0, 1, 0) = (c1, c2, c1);

that is, it is the set of all vectors whose first and third components are the same.
There are many vectors that can be adjoined to this set while maintaining the
linear independence that the set now has. Several possible vectors are (1, 0, 0),
(1, 0, 2) and (1, 1, 2). The proof of this fact is left as an exercise.

It is not possible to adjoin two vectors to the original set of vectors from the previous
example and maintain linear independence. This is due to an important theorem which says:

Theorem: A linearly independent set of n-vectors can contain at most n vectors.

A related theorem discusses the least number of vectors necessary for spanning the n-vectors.

Theorem: No set containing fewer than n vectors can span the set of all n-
vectors.

If we have a set of n n-vectors, there is another way besides the method we have used in
examples thus far to test whether the set is linearly independent or not. Let us consider the
n-vectors {v1,v2, . . . ,vn}. In determining whether or not we have linear independence, we
consider whether there are constants c1, . . . , cn not all zero for which the linear combination

c1v1 + c2v2 + · · ·+ cnvn

is 0. We can look at this question in another way using matrices. In particular, if we create
an n × n matrix V whose columns are the individual (column) vectors vj, j = 1, . . . , n —
that is,

V :=

[
v1 v2 · · · vn

↓ ↓ ↓

]
— and if c is the vector of coefficients c := (c1, c2, . . . , cn), then another way to ask the
same question is to ask whether the matrix equation Vc = 0 has any other solution besides
c = 0. Now we know that if a matrix equation Ax = b has a solution at all, it has either
one (unique) solution or infinitely many solutions, and we can use the determinant of the
coefficient matrix A to decide which of these is the case. For the equation Vc = 0, then,
det(V) = 0 tells us there is a nonzero vector c satisfying Vc = 0, and hence the set of
vectors {v1,v2, . . . ,vn} is linearly dependent. If det(V) 6= 0, then the set of vectors is
linearly independent.

Example: Determine whether or not the set of vectors {(1, 2, 2), (−1, 1, 0), (1, 8, 6)} is lin-
early independent.
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As per the discussion above, the question can be settled by looking at the deter-
minant ∣∣∣∣∣∣

1 −1 1
2 1 8
2 0 6

∣∣∣∣∣∣ = 2(−1)3+1

∣∣∣∣ −1 1
1 8

∣∣∣∣
+(0)(−1)3+2

∣∣∣∣ 1 1
2 8

∣∣∣∣+ 6(−1)3+3

∣∣∣∣ 1 −1
2 1

∣∣∣∣
= 2(−9) + 0 + 6(3)

= 0.

Since this determinant is zero, the set of vectors is linearly dependent.

5 Eigenvalues and Eigenvectors

The product Ax of a matrix A ∈ Mn×n(R) and an n-vector x is itself an n-vector. Of
particular interest in many settings (of which differential equations is one) is the following
question:

For a given matrix A, what are the vectors x for which the product Ax is a
scalar multiple of x? That is, what vectors x satisfy the equation

Ax = λx

for some scalar λ?

It should immediately be clear that, no matter what A and λ are, the vector x = 0 (that is,
the vector whose elements are all zero) satisfies this equation. With such a trivial answer,
we might ask the question again in another way:

For a given matrix A, what are the nonzero vectors x that satisfy the equation

Ax = λx

for some scalar λ?

To answer this question, we first perform some algebraic manipulations upon the equation
Ax = λx. We note first that, if I = In (the n×n multiplicative identity inMn×n(R)), then
we can write

Ax = λx ⇔ Ax− λx = 0

⇔ Ax− λIx = 0

⇔ (A− λI)x = 0.

Remember that we are looking for nonzero x that satisfy this last equation. But A− λI is
an n×n matrix and, should its determinant be nonzero, this last equation will have exactly
one solution, namely x = 0. Thus our question above has the following answer:
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The equation Ax = λx has nonzero solutions for the vector x if and only if the
matrix A− λI has zero determinant.

As we will see in the examples below, for a given matrix A there are only a few special values
of the scalar λ for which A − λI will have zero determinant, and these special values are
called the eigenvalues of the matrix A. Based upon the answer to our question, it seems we
must first be able to find the eigenvalues λ1, λ2, . . . λn of A and then see about solving the
individual equations Ax = λix for each i = 1, . . . , n.

Example: Find the eigenvalues of the matrix A =

[
2 2
5 −1

]
.

The eigenvalues are those λ for which det(A− λI)= 0. Now

det(A− λI) = det

([
2 2
5 −1

]
− λ

[
1 0
0 1

])
= det

([
2 2
5 −1

]
−
[
λ 0
0 λ

])
=

∣∣∣∣ 2− λ 2
5 −1− λ

∣∣∣∣
= (2− λ)(−1− λ)− 10

= λ2 − λ− 12.

The eigenvalues of A are the solutions of the quadratic equation λ2 − λ− 12 = 0,
namely λ1 = −3 and λ2 = 4.

As we have discussed, if det(A − λI) = 0 then the equation (A − λI)x = b has either
no solutions or infinitely many. When we take b = 0 however, it is clear by the existence
of the solution x = 0 that there are infinitely many solutions (i.e., we may rule out the “no
solution” case). If we continue using the matrix A from the example above, we can expect
nonzero solutions x (infinitely many of them, in fact) of the equation Ax = λx precisely
when λ = −3 or λ = 4. Let us procede to characterize such solutions.

First, we work with λ = −3. The equation Ax = λx becomes Ax = −3x. Writing

x =

[
x1

x2

]
and using the matrix A from above, we have

Ax =

[
2 2
5 −1

] [
x1

x2

]
=

[
2x1 + 2x2

5x1 − x2

]
,

while

−3x =

[
−3x1

−3x2

]
.
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Setting these equal, we get[
2x1 + 2x2

5x1 − x2

]
=

[
−3x1

−3x2

]
⇒ 2x1 + 2x2 = −3x1 and 5x1 − x2 = −3x2

⇒ 5x1 = −2x2

⇒ x1 = −2

5
x2.

This means that, while there are infinitely many nonzero solutions (solution vectors) of the
equation Ax = −3x, they all satisfy the condition that the first entry x1 is −2/5 times the
second entry x2. Thus all solutions of this equation can be characterized by[

2t
−5t

]
= t

[
2
−5

]
,

where t is any real number. The nonzero vectors x that satisfy Ax = −3x are called
eigenvectors associated with the eigenvalue λ = −3. One such eigenvector is

u1 =

[
2
−5

]
and all other eigenvectors corresponding to the eigenvalue (−3) are simply scalar multiples
of u1 — that is, u1 spans this set of eigenvectors.

Similarly, we can find eigenvectors associated with the eigenvalue λ = 4 by solving
Ax = 4x:[

2x1 + 2x2

5x1 − x2

]
=

[
4x1

4x2

]
⇒ 2x1 + 2x2 = 4x1 and 5x1 − x2 = 4x2

⇒ x1 = x2.

Hence the set of eigenvectors associated with λ = 4 is spanned by

u2 =

[
1
1

]
.

Example: Find the eigenvalues and associated eigenvectors of the matrix

A =

 7 0 −3
−9 −2 3
18 0 −8

 .
First we compute det(A−λI) via a cofactor expansion along the second column:∣∣∣∣∣∣

7− λ 0 −3
−9 −2− λ 3
18 0 −8− λ

∣∣∣∣∣∣ = (−2− λ)(−1)4

∣∣∣∣ 7− λ −3
18 −8− λ

∣∣∣∣
= −(2 + λ)[(7− λ)(−8− λ) + 54]

= −(λ+ 2)(λ2 + λ− 2)

= −(λ+ 2)2(λ− 1).
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Thus A has two distinct eigenvalues, λ1 = −2 and λ3 = 1. (Note that we might
say λ2 = −2, since, as a root, −2 has multiplicity two. This is why we labelled
the eigenvalue 1 as λ3.)

Now, to find the associated eigenvectors, we solve the equation (A− λjI)x = 0
for j = 1, 2, 3. Using the eigenvalue λ3 = 1, we have

(A− I)x =

 6x1 − 3x3

−9x1 − 3x2 + 3x3

18x1 − 9x3

 =

 0
0
0


⇒ x3 = 2x1 and x2 = x3 − 3x1

⇒ x3 = 2x1 and x2 = −x1.

So the eigenvectors associated with λ3 = 1 are all scalar multiples of

u3 =

 1
−1
2

 .
Now, to find eigenvectors associated with λ1 = −2 we solve (A + 2I)x = 0. We
have

(A + 2I)x =

 9x1 − 3x3

−9x1 + 3x3

18x1 − 6x3

 =

 0
0
0


⇒ x3 = 3x1.

Something different happened here in that we acquired no information about x2.
In fact, we have found that x2 can be chosen arbitrarily, and independently of
x1 and x3 (whereas x3 cannot be chosen independently of x1). This allows us
to choose two linearly independent eigenvectors associated with the eigenvalue
λ = −2, such as u1 = (1, 0, 3) and u2 = (1, 1, 3). It is a fact that all other
eigenvectors associated with λ2 = −2 are in the span of these two; that is, all
others can be written as linear combinations c1u1 + c2u2 using an appropriate
choices of the constants c1 and c2.

Example: Find the eigenvalues and associated eigenvectors of the matrix

A =

[
−1 2
0 −1

]
.

We compute

det(A− λI) =

∣∣∣∣ −1− λ 2
0 −1− λ

∣∣∣∣
= (λ+ 1)2.
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Setting this equal to zero we get that λ = −1 is a (repeated) eigenvalue. To find
any associated eigenvectors we must solve for x = (x1, x2) so that (A + I)x = 0;
that is, [

0 2
0 0

] [
x1

x2

]
=

[
2x2

0

]
=

[
0
0

]
⇒ x2 = 0.

Thus, the eigenvectors corresponding to the eigenvalue λ = −1 are the vectors
whose second component is zero, which means that we are talking about all scalar
multiples of u = (1, 0).

Notice that our work above shows that there are no eigenvectors associated with λ = −1
which are linearly independent of u. This may go against your intuition based upon the
results of the example before this one, where an eigenvalue of multiplicity two had two
linearly independent associated eigenvectors. Nevertheless, it is a (somewhat disparaging)
fact that eigenvalues can have fewer linearly independent eigenvectors than their multiplicity
suggests.

Example: Find the eigenvalues and associated eigenvectors of the matrix

A =

[
2 −1
1 2

]
.

We compute

det(A− λI) =

∣∣∣∣ 2− λ −1
1 2− λ

∣∣∣∣
= (λ− 2)2 + 1

= λ2 − 4λ+ 5.

The roots of this polynomial are λ1 = 2+i and λ2 = 2−i; that is, the eigenvalues
are not real numbers. This is a common occurrence, and we can press on to
find the eigenvectors just as we have in the past with real eigenvalues. To find
eigenvectors associated with λ1 = 2 + i, we look for x satisfying

(A− (2 + i)I)x = 0 ⇒
[
−i −1
1 −i

] [
x1

x2

]
=

[
0
0

]
⇒

[
−ix1 − x2

x1 − ix2

]
=

[
0
0

]
⇒ x1 = ix2.

Thus all eigenvectors associated with λ1 = 2+i are scalar multiples of u1 = (i, 1).
Proceeding with λ2 = 2− i, we have

(A− (2− i)I)x = 0 ⇒
[
i −1
1 i

] [
x1

x2

]
=

[
0
0

]
⇒

[
ix1 − x2

x1 + ix2

]
=

[
0
0

]
⇒ x1 = −ix2,
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which shows all eigenvectors associated with λ2 = 2− i to be scalar multiples of
u2 = (−i, 1).

Notice that u2, the eigenvector associated with the eigenvalue λ2 = 2 − i in the last
example, is the complex conjugate of u1, the eigenvector associated with the eigenvalue
λ1 = 2 + i. It is indeed a fact that, if A ∈ Mn×n(R) has a nonreal eigenvalue λ1 = λ + iµ
with corresponding eigenvector ξ1, then it also has eigenvalue λ2 = λ−iµ with corresponding
eigenvector ξ2 = ξ̄1.
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