Model: \(Y = X\beta + \epsilon \)
- \(Y \) random vector of responses (we use \(y \) for the observed value of \(Y \))
- \(\epsilon \) random “error” vector
- \(X \) is the model matrix, each column is an explanatory variable, this is an \(n \times (k + 1) \) matrix (we assume the columns of \(X \) are linearly independent)
- \(\beta \) the vector of (unknown) coefficients (parameters)

Fitted model: \(y = X\hat{\beta} + e \)
- \(y \) observed values of response variable
- \(\hat{\beta} \) fitted values of coefficients, (this could either be an estimator or an estimate, notation is ambiguous)
- \(e \) residual vector (defined by this equation)
- \(X\hat{\beta} \) also called \(\hat{y} \), the fitted values of the response variable

“Least squares estimate” and its properties:

1. \(e = y - \hat{y} = y - X\hat{\beta} \) is orthogonal to the column space of \(X \).
2. \(y - \bar{y} = (\hat{y} - \bar{y}) + e \) is a decomposition of \(y - \bar{y} \) into two orthogonal vectors.
3. \(|y - \bar{y}|^2 = |\hat{y} - \bar{y}|^2 + |e|^2 \) (Pythagorean Theorem of Statistics)

Some important linear algebra facts:

1. The length of a vector \(u \) satisfies \(|u|^2 = u \cdot u = u^T u \)
2. Two vectors \(u \) and \(v \) are orthogonal if and only if \(u \cdot v = 0 \) if and only if \(u^T v = 0 \).

The “Hat” Matrix

\[
H = X \left(X^T X \right)^{-1} X^T
\]

Properties:

1. \(\hat{y} = Hy \)
2. \(H \) is symmetric \((H^T = H)\) and idempotent \((H^2 = H)\).
3. \(e = (I - H)y \)

Definitions: If \(Z \) is a random vector (with components \(Z_i \)),

1. \(E(Z) = \mu_Z \) is the vector with components \(E(Z_i) \)
2. \(\text{Cov}(Z) \) is the matrix with the \(i, j^{th} \) entry equal to \(\text{Cov}(Z_i, Z_j) \). (Note that the \(i^{th} \) diagonal entry of \(\text{Cov}(Z) \) is the variance of \(Z_i \).)

Note: \(\text{Cov}(Z) = E[(Z - \mu_Z)(Z - \mu_Z)^T] \).
Estimating β.

1. Assume $E[\epsilon] = 0$. Then $\hat{\beta}$ is an unbiased estimator of β.

$$\hat{\beta} = \left(X^T X \right)^{-1} X^T Y = \left(X^T X \right)^{-1} X^T (X\beta + \epsilon) = \beta + \left(X^T X \right)^{-1} X^T \epsilon$$

So

$$E[\hat{\beta}] = \beta + E[\left(X^T X \right)^{-1} X^T \epsilon] = \beta$$

2. Assume that $\text{Cov}(\epsilon) = \sigma^2 I$. Then $\text{Cov}(\hat{\beta}) = \sigma^2 \left(X^T X \right)^{-1}$.

$$\text{Cov}(\beta) = E[(\beta - \hat{\beta})(\beta - \hat{\beta})^T] = E \left[\left(X^T X \right)^{-1} X^T \epsilon \epsilon^T X \left(\left(X^T X \right)^{-1} \right)^T \right]$$

Estimating σ^2.

1. $E(\epsilon) = 0$.

2. $\text{Cov}(\epsilon) = \sigma^2 (I - H)$

3. $\text{Var}(\epsilon_i) = \sigma^2 (1 - h_{ii})$

4. $\hat{\sigma}^2 = S^2 = \frac{|\epsilon|^2}{n - (k + 1)} = \frac{\text{SSE}}{n - (k + 1)}$ is an unbiased estimator of σ^2.

The standard, distributional assumption: ϵ_i are independent, normal with variance σ^2. Then

1. $\frac{(n - (k + 1))S^2}{\sigma^2} \sim \text{Chisq}((n - (k + 1)))$

2. $\hat{\beta}, \hat{Y}$, and ϵ all have normal distributions.

3. Let $W = \left(X^T X \right)^{-1}$ and $w_i = W_{ii}$. Let $\text{SE}(\hat{\beta}) = Sw_i$. Then

$$\frac{\hat{\beta}_i - \beta_i}{\text{SE}(\hat{\beta}_i)} \sim t(n - (k + 1))$$