1. The logical sequence of ideas:
 (a) We estimate a parameter of a population by using a statistic computed from a sample.
 (b) The problem: how big is the sampling error likely to be?
 (c) The sampling distribution tells us the complete story of the sampling error.
 (d) We are not omniscient – so we’ll never know the sampling distribution.
 (e) We don’t need to know everything about the sampling distribution, only something about its variation.
 (f) We need a model for the population.

2. Approach 1 (BC) – make a strong assumption about the nature of the population.

3. Approach 2 (AC) – the population looks like the sample.

4. The all-purpose bootstrap recipe:

   ```r
   do(boatloads) * statistic(model, data = resample(original_data))
   ```

   ```r
   r <- do(1000) * mean(~Mass, data = resample(dimes))
   histogram(~result, data = r)
   densityplot(~result, data = r)
   ```

5. The standard error of a statistic

   ```r
   sd(~result, data = r)
   ```

 [1] 0.003949

Chapel: *Lectio Divina*, S. Bytwerk and R. Crow