1. What does the probability of an event measure?

What does “the probability that a coin comes up heads is 1/2” mean?

Notation; \(P(E) \) is the probability of \(E \).

2. Binomial Model, a probability model
 (a) \(n \) trials
 (b) Two possible outcomes, “Success” and “Failure”
 (c) Probability of success on each trial \(\pi \)
 (d) The trials are independent

3. Examples of the binomial model: Fill in the following chart.

<table>
<thead>
<tr>
<th>Story</th>
<th>Success</th>
<th>(\pi)</th>
<th>Independent?</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 children select the helper or hinderer toy, null model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 coins are tossed and heads are counted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 students are asked to identify Tim out of two faces, null model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A student takes a 40 question multiple choice test and just guesses, each problem has five choices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 dice are tossed and the number of 6’s showing are counted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A plant makes parts and hopes that at most 1% of the parts are defective. 1,000 parts are inspected.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \(X \) counts the number of successes in a binomial process with parameters \(n \) and \(\pi \), \(R \) computes probabilities related to the number of successes:

- \(\text{dbinom}(x, \text{size}, \text{prob}) \) returns \(P(X = x) \), \(\text{size} = n \), \(\text{prob} = \pi \)
- \(\text{pbinom}(q, \text{size}, \text{prob}) \) returns \(P(X \leq q) \)
- \(\text{rbinom}(n, \text{size}, \text{prob}) \) makes \(n \) random draws of the random variable \(X \) and returns them in a vector.

4. Compute the following probabilities related to the stories above:

- Exactly 50 heads are thrown
- No more than 60 heads are thrown
- All 5 dice are sixes
- No more than two dice are sixes
- No defectives are found in the 1000 parts
- No more than 10 defectives are found
- The student gets none right!
- The student gets 10 or more right
- Exactly 10 children choose the helper
- At least 14 children choose the helper
- Exactly 20 out of 25 students choose Tim
- At least 20 students choose Tim