Chapel today: *Getting Started*, Student Worship Team

1. Transformations of random variables \(X\). If \(t\) is a function applied to data then \(Y = t(X)\) is the corresponding random variable.

2. If \(Y = t(X)\), we want to find \(E(Y)\) given the pdf of \(X\).

3. Example: \(X\) is the number that appears on a fair die. \(t(x) = |X - 3|\).

\[
\begin{array}{c|cccccc}
 x & 1 & 2 & 3 & 4 & 5 & 6 \\
 f(x) & 1/6 & & & & & \\
 xf(x) & 1/6 & & & & & \\
\end{array}
\]

\[
E(X) = \sum xf(x) =
\]

\[
\begin{array}{c|cccc}
 y & 0 & 1 & 2 & 3 \\
 f(y) & 1/6 & & & \\
 yf(y) & 1/6 & & & \\
\end{array}
\]

\[
E(Y) = \sum yf(y) =
\]

4. Shortcut: \(E(t(X)) = \sum t(x)f(x)\).

5. The same shortcut works for continuous random variables. \(E(t(x)) = \int_{-\infty}^{\infty} t(x)f(x) \, dx\).

6. Some rules (here \(c\) is a constant)

\[
E(cX) = cE(X) \quad E(t(X) + u(X)) = E(t(X)) + E(u(X))
\]

7. The variance of a random variable \(X\) is \(E[(X - \mu)^2]\). The variance of \(X\) is written \(\text{Var}(X)\) or \(\sigma_X^2\). The standard deviation is \(\sigma = \sqrt{\text{Var}(X)}\).

8. Example: The variance of \(X\) where \(X\) is the number of heads in 4 coin tosses.

9. Useful shortcut: \(\text{Var}(X) = E(X^2) - \mu_X^2\).

10. The variance of our favorite random variables:

 (a) If \(X \sim \text{Binom}(n, \pi)\) then \(\text{Var}(X) = np(1 - \pi)\).

 (b) If \(X \sim \text{Hyper}(m, n, k)\) then \(\text{Var}(X) = k \left(\frac{m}{m+n} \right) \left(\frac{n}{m+n} \right) \left(\frac{m+n-k}{m+n-1} \right)\).

 (c) If \(X \sim \text{Unif}(a, b)\) then \(\text{Var}(X) = (b-a)^2/12\).

 (d) If \(X \sim \text{Exp}(\lambda)\) then \(\text{Var}(X) = 1/\lambda^2\).
Homework

1. Note: the homework due today will be collected on Thursday rather than Tuesday.

2. Read Section 4.6.

4. Additional problems:

 (a) Let X be the the random variable that results from adding the numbers on two fair dice. Compute the mean and variance of X.

 (b) Refer to Example 3.4.2 of the text. Suppose that insurance company sells a five year term policy worth $100,000 to a 55 year-old male for a lump sum payment of $5,000. Let X be the value of this policy to the company in 5 years. Note that X has two possible values, $5,000 if the policy holder lives and $-95,000 if the policy holder dies. Using the data in the table to estimate the probability of death in 5 years, compute the expected value and the variance of this random variable X. (There are two complications that we are omitting from consideration here. First, there is a time value of money. $5,000 up front is worth more than $5,000 in five years. Second, there is the fact that insurance premiums are usually paid over time, typically in six month installments.)

 (c) For every k, the function $f(x) = (k + 1)x^k$ is the density of a random variable X that has values $0 \leq x \leq 1$. Compute the mean and variance of this random variable for each k. Evaluate your expression for $k = 1, 5, 10$.