Big idea: \(\bar{X} \) has mean \(\mu \), variance \(\sigma^2/n \), and (if \(n \) is large) is approximately normal.

1. Distributions of sums of random variables.
 (a) \(E(Y + Z) = E(Y) + E(Z) \)
 (b) \(E(cY) = cE(Y) \)
 (c) If \(Y \) and \(Z \) are independent, \(\text{Var}(Y + Z) = \text{Var}(Y) + \text{Var}(Z) \).
 (d) If \(Y \) and \(Z \) are normal and independent, \(Y + Z \) is normal.

2. The distribution of \(\bar{X} \).
 (a) \(E(\bar{X}) = E(X) = \mu \).
 (b) \(\text{Var}(\bar{X}) = \text{Var}(X)/n \)
 (c) If \(X \) is normal, \(\bar{X} \) is normal.

3. The Central Limit Theorem.

Homework - to turn in Tuesday, March 31

1. Read Section 5.2.
2. Do problem 5.3, 4, 5, 6.

Useful R

```r
> m2=combn(x,2,mean)
> histogram(m2)
```