Big idea: \bar{X} has mean μ, variance σ^2/n, and (if n is large) is approximately normal.

1. Some simulations.
2. The Central Limit Theorem.
3. Distributions of sums of random variables.
 (a) $E(Y + Z) = E(Y) + E(Z)$
 (b) $E(cY) = cE(Y)$
 (c) If Y and Z are independent, $\text{Var}(Y + Z) = \text{Var}(Y) + \text{Var}(Z)$.
 (d) If Y and Z are normal and independent, $Y + Z$ is normal.
4. If X is normal, \bar{X} is normal.

Homework - due Thursday, April 3, 2008

1. Read Section 5.2.
2. Do problem 5.3, 4, 5.

Useful R

```r
> sr=read.csv('http://www.calvin.edu/~stob/data/sr.csv')
> m2=combn(sr$GPA,2,mean)
> histogram(m2)
> m5=replicate(100000, mean( sample(sr$GPA,5,replace=F)))
> histogram(m5)
```