1. The mean μ_X of a random variable X.

2. The variance σ^2_X of a random variable X.

3. Combining random variables – the linear case.

 (a) If c is a constant, X a random variable, and $Y = cX$, then $\mu_Y = c\mu_X$ and $\sigma^2_Y = c^2\sigma^2_X$.

 (b) If X and Y are random variables and $Z = X + Y$, then $\mu_Z = \mu_X + \mu_Y$.

 (c) If X and Y are independent random variables and $Z = X + Y$, then $\sigma^2_Z = \sigma^2_X + \sigma^2_Y$.

 (d) If X and Y are independent and have normal distributions, then $Z = X + Y$ has a normal distribution.

4. Nonlinear functions of random variable. If X is a random variable and $Y = h(X)$ for a nonlinear function h, we cannot in general compute μ_Y and σ_Y from μ_X and σ_X. But there are approximations that are sometimes used. These are called propagation of error formulas and you met them in Physics 133.

 (a) Suppose that X is a random variable $Y = h(X)$. Then

 $$
 \mu_Y \approx h(\mu_X) \quad \sigma^2_Y \approx \left(\frac{dh}{dX} \right)^2 \sigma^2_X
 $$

 where the derivative is evaluated at μ_X.

 (b) Suppose that X and Y are independent random variables and that $Z = h(X,Y)$. Then

 $$
 \mu_Z \approx h(\mu_X, \mu_Y) \quad \sigma^2_Z \approx \left(\frac{\partial h}{\partial X} \right)^2 \sigma^2_X + \left(\frac{\partial h}{\partial Y} \right)^2 \sigma^2_Y
 $$

 where the partial derivatives are evaluated at (μ_X, μ_Y).

Homework

1. The width of a casing for a door is given as $24 \pm \frac{1}{8}$ inches. The door itself has a width of $23 \frac{7}{8} \pm \frac{1}{16}$ inches. These two measurements are independent of each other.

 (a) Determine the mean and standard deviation of the difference of the casing and door widths.

 (b) Assuming that a normal model is a good approximation to both the door and casing widths, what is the probability that the door does not fit in the casing?

2. Two resistors of resistance R_1 and R_2 ohms are connected in parallel. The resistances of the two resistors are reported as $R_1 = 20 \pm 0.5$ ohms and $R_2 = 50 \pm 1$ ohm. Determine the approximate mean and standard deviation of the resistance R of the combination. Recall that this resistance is given by

 $$
 R = \frac{R_1 R_2}{R_1 + R_2}
 $$