Outline
1. Examples:
 (a) left-handed Calvin students
 (b) spinning pennies

2. The new setting:
 (a) A population with one categorical variable.
 (b) One of the categories of the variable is called “success”.
 (c) p is the proportion of successes in the population.
 (d) We have a SRS of size n from the population.
 (e) x is the number of successes in the sample.
 (f) $\hat{p} = x/n$ is an estimate of p. (hats are always estimates, i.e., statistics)

3. The sampling distribution of \hat{p}. In all possible samples of size n:
 (a) \hat{p} has mean p
 (b) \hat{p} has standard deviation $\sqrt{\frac{p(1-p)}{n}}$
 (Actually, this is not quite right. It is true when the sampling is with replacement and is approximately true when the sample size is small relative to the population size.)
 (c) \hat{p} has an approximately normal distribution (when n is large and p and $1 - p$ are not too close to 0)

4. A 95% confidence interval for p — first attempt
 \[\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \]
 Note that this is of the form estimate ± critical value · standard error.