Outline

1. Fix a population, a sample size \(n \), and a quantitative variable \(x \). The quantitative variable has a mean \(\mu \) and a standard deviation \(\sigma \).

2. The sampling distribution of \(\bar{x} \) has the following properties:
 (a) mean \(\mu \) \((\mu_{\bar{x}} = \mu_x) \)
 (b) standard deviation \(\sigma / \sqrt{n} \) \((\sigma_{\bar{x}} = \sigma_x / \sqrt{n}) \)
 (c) approximately normal (if \(n \) is large or the distribution of the population variable \(x \) is approximately normal).

3. Some examples:
 (a) IQ Test: \(\mu = 100 \quad \sigma = 15 \)

 (b) SAT Math: \(\mu = 500 \quad \sigma = 110 \)

 (c) Raisin Bran boxes: \(\mu = 11 \quad \sigma = .2 \)

 (d) US Counties: \(\mu = 89,596 \quad \sigma = 292,462 \)

 (e) GPA of Calvin seniors: \(\mu = 3.3 \quad \sigma = .45 \)

4. Two important notes:
 (a) 2(b) above is only true if the population is large relative to the sample size.
 (b) If the population variable is exactly normal, then the sampling distribution of \(\bar{x} \) is exactly normal.