Outline

1. Situation: a categorical variable with I levels and a quantitative variable
 (a) Simple random samples from each of I populations
 (b) Simple random sample from one population divided into I groups based on a categorical variable
 (c) Randomized comparative experiment with I treatments

2. Examples:
 (a) Cuckoos eggs.
 (b) Chicken feed.
 (c) Reading instruction.

3. Research question: is there a difference in the population means?
 H_0: $\mu_1 = \mu_2 = \cdots = \mu_I$
 H_a: not all of the μ_i are equal

4. Possible solution: do all two-sample t tests.
 (a) multiple comparisons
 (b) post hoc analysis

5. ANOVA (analysis of variance)
 (a) Assumption: the i^{th} group has a normal distribution mean μ_i and standard deviation σ_i.
 (b) Statistic: F – the bigger F is, the greater the evidence against H_0.

![ANOVA Table](image1)

![ANOVA Table](image2)
Reading Quiz: Rubber Bands

21 rubber bands were divided into two groups. One group was placed in hot water for 4 minutes while the other was left at room temperature. They were each then stretched by a 1.35 km weight and the amount of stretch in mm was recorded. The data from Crunchit is below.

The hot water group is labeled H and the room temperature group is A. A hypothesis test is performed and the results are below.

1. What are the parameters μ_1 and μ_2?

2. What is the null hypothesis in terms of μ_1 and μ_2?

3. Write a good sentence that gives a conclusion from this hypothesis test.