Outline

1. To maintain consistency with the book, we will use p in instead of π for the parameter (population proportion) and \hat{p} instead of $\hat{\pi}$ for the estimate.

2. The sampling distribution of \hat{p}. In all possible samples of size n:
 (a) \hat{p} has mean p
 (b) \hat{p} has standard deviation $\sqrt{\frac{p(1-p)}{n}}$
 (c) \hat{p} has an approximately normal distribution (when n is large and p and $1-p$ are not too close to 0)

3. A 95% confidence interval for p — first attempt

 $$\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

 (Use only if number of successes and number of failures are each at least 15).

 Example: 221 of 530 spun coins came up heads. Estimate for heads proportion is .417. Confidence interval is:

4. A better 95% confidence interval: the plus 4 interval. Add 2 successes and 2 failures before computing the above interval. (Use this interval if $n \geq 10$ and the confidence level is at least 90%).

 Example: 7 of 68 Mathematics 143 students write with their left hand. Confidence interval is

5. Hypothesis test of $H_0: p = p_0$.

 If H_0 is true, $\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$ has an approximately standard normal distribution.

 Example: If students are asked to choose a letter, S or Q, is each equally likely?
 H_0: $p = .5$
 H_a: $p \neq .5$
 42 of 68 students choose S. P-value is: