Day 11 - Lab 7.1

Kate Ardinger

1/21/2015

```r
library(ISLR)
attach(Wage)
```

Fitting the model - with linear combinations of each element

```r
poly(age, 4)
```

```r
fit <- lm(wage~poly(age,4), data=Wage)
coef(summary(fit))
```

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| (Intercept)| 111.70361| 0.7287409 | 153.283015 | 0.000000e+00 |
| poly(age, 4) 1 | 447.06785 | 39.9147851 | 11.200558 | 1.484604e-28 |
| poly(age, 4) 2 | -478.31581 | 39.9147851 | -11.983424 | 2.355831e-32 |
| poly(age, 4) 3 | 125.52169 | 39.9147851 | 3.144742 | 1.678622e-03 |
| poly(age, 4) 4 | -77.91118 | 39.9147851 | -1.951938 | 5.103865e-02 |
```

Fitting again - raw=T represents exactly age, age^2, age^3, etc.

```r
fit2 <- lm(wage~poly(age, 4, raw=T), data=Wage)
coef(summary(fit2))
```

|            | Estimate | Std. Error | t value | Pr(>|t|) |
|------------|----------|------------|---------|----------|
| (Intercept) | -1.841542e+02 | 6.004038e+01 | -3.067172 | 0.0021802539 |
| poly(age, 4, raw = T) 1 | 2.124552e+01 | 5.886748e+00 | 3.609042 | 0.0003123618 |
| poly(age, 4, raw = T) 2 | -5.638593e-01 | 2.061083e-01 | -2.735743 | 0.0062606446 |
| poly(age, 4, raw = T) 3 | 6.810688e-03 | 3.065931e-03 | 2.221409 | 0.0263977518 |
| poly(age, 4, raw = T) 4 | -3.203830e-05 | 1.641359e-05 | -1.951938 | 0.0510386498 |
```

Another way to fit the model - I() is a “wrapper” function

```r
fit2a <- lm(wage~age+I(age^2) + I(age^3) + I(age^4), data=Wage)
coef(fit2a)
```
A more compact way to do the same model - `cbind()` is also a wrapper function

```r
fit2b <- lm(wage~cbind(age, age^2, age^3, age^4), data=Wage)
```

Now we will generate values of age for which we will make predictions; also, specify that we want the standard errors

```r
agelims <- range(age)
age.grid <- seq(from=agelims[1], to=agelims[2])
preds <- predict(fit, newdata=list(age=age.grid), se=TRUE)
se.bands <- cbind(preds$fit + 2*preds$se.fit, preds$fit-2*preds$se)
```

Now plotting the data

```r
par(mfrow=c(1,2), mar=c(4.5,4.5,1,1),oma=c(0,0,4,0))
plot(age,wage,xlim=agelims,cex=.5, col="darkgrey")
title("Degree-4 Polynomial",outer=T)
lines(age.grid, preds$fit, lwd=2, col="blue")
matlines(age.grid, se.bands, lwd=1, col="blue", lty=3)
```
the fitted values are the same for both ways of using poly()

```r
p2 <- predict(fit2, newdata=list(age=age.grid), se=TRUE)
max(abs(p2-fit2$fit))
```

```r
## [1] 7.81597e-11
```

can also decide the degree of polynomial to use by using hypothesis tests

```r
fit1 <- lm(wage~age, data=Wage)
fit2 <- lm(wage~poly(age, 2), data=Wage)
fit3 <- lm(wage~poly(age, 3), data=Wage)
fit4 <- lm(wage~poly(age, 4), data=Wage)
fit5 <- lm(wage~poly(age, 5), data=Wage)
anova(fit1, fit2, fit3, fit4, fit5)
```
Analysis of Variance Table

```
# Model 1: wage ~ age
# Model 2: wage ~ poly(age, 2)
# Model 3: wage ~ poly(age, 3)
# Model 4: wage ~ poly(age, 4)
# Model 5: wage ~ poly(age, 5)
```

<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5022216</td>
<td>2</td>
<td>228786</td>
<td>143.5931</td>
<td>< 2.2e-16 ***</td>
</tr>
<tr>
<td>2</td>
<td>4793430</td>
<td>1</td>
<td>15756</td>
<td>9.8888</td>
<td>0.001679 **</td>
</tr>
<tr>
<td>3</td>
<td>4777674</td>
<td>1</td>
<td>6070</td>
<td>3.8098</td>
<td>0.051046 .</td>
</tr>
<tr>
<td>4</td>
<td>4770322</td>
<td>1</td>
<td>1283</td>
<td>0.8050</td>
<td>0.369682</td>
</tr>
<tr>
<td>5</td>
<td>4770322</td>
<td>1</td>
<td>1283</td>
<td>0.8050</td>
<td>0.369682</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null hypothesis i: that model i is sufficient to explain the data against the alternative hypothesis that a more complex model (i+1) is required.

We can do the same thing using the `poly()`

```
coef(summary(fit5))
```

```
# Estimate Std. Error  t value  Pr(>|t|)
(Intercept) 111.70361 0.7287647 153.2780243 0.000000e+00
poly(age, 5)1 447.06785 39.9160847 11.2001930 1.491111e-28
poly(age, 5)2 -478.31581 39.9160847 -11.9830341 2.367734e-32
poly(age, 5)3 125.52169 39.9160847  3.1446392 1.679213e-03
poly(age, 5)4 -77.91118 39.9160847 -1.9518743 5.104623e-02
poly(age, 5)5 -35.81289 39.9160847 -0.8972045 3.696820e-01
```

The square of the t-statistics are the same as the F-statistics in the `anova()` function

Can also use `anova()` to compare these models

```
fit1 <- lm(wage~education+age, data=Wage)
fit2 <- lm(wage~education+poly(age,2), data=Wage)
fit3 <- lm(wage~education+poly(age,3), data=Wage)
anova(fit1,fit2,fit3)
```
Notice that we could also choose the correct polynomial degree using cross-validation.

Now we will predict if an individual earns more than $250,000 a year.

```r
fit <- glm(I(wage>250)~poly(age,4), data=Wage, family=binomial)
preds <- predict(fit, newdata=list(age=age.grid), se=T)
```

We have to use a transformation to come up with the C.I. for logistic regressions.

```r
pfit <- exp(preds$fit)/(1+exp(preds$fit))
se.bands.logit <- cbind(preds$fit + 2*preds$se.fit, preds$fit-2*preds$se)
se.bands <- exp(se.bands.logit)/(1+exp(se.bands.logit))
```

Can compute probabilities using the `predict()` function.

```r
preds <- predict(fit, newdata=list(age=age.grid), type="response")
head(preds)
```

However, we cannot compute confidence intervals for these probabilities because they would be negative.

A Rug Plot
plot(age, I(wage>250), xlab=agemins, type="n", ylim=c(0,.2))
points(jitter(age), I((wage>250)/5), cex=.5, pch="|", col="darkgrey")
lines(age.grid, pfit, lwd=2, col="blue")
matlines(age.grid, se.bands, lwd=1, col="blue", lty=3)

Fitting a step function

```
table(cut(age,4))
```

````
##
## (17.9,33.5] (33.5,49] (49,64.5] (64.5,80.1]
## 750 1399 779 72
```

```
fit <- lm(wage~cut(age,4), data=Wage)
coef(summary(fit))
```
| | Estimate | Std. Error | t value | Pr(>|t|) |
|----------------------|----------|------------|---------|----------|
| (Intercept) | 94.158392| 1.476069 | 63.789970| 0.000000e+00 |
| cut(age, 4)(33.5,49] | 24.053491| 1.829431 | 13.148074| 1.982315e-38 |
| cut(age, 4)(49,64.5] | 23.664559| 2.067958 | 11.443444| 1.040750e-29 |
| cut(age, 4)(64.5,80.1]| 7.640592 | 4.987424 | 1.531972 | 1.256350e-01 |