MATH 365: Homework #24
Due Date: Mon., Apr. 02, 2012

Do: (but do not hand in)

- Exercise 1 from Section 4.1.
- Exercise 5 from Section 4.3

★31 Prove the Maximum Modulus Theorem in the special case that \(\Omega \) is an open disk.
That is, suppose \(f \) is analytic on \(D_r(a) \) with \(r > 0 \), and that \(|f(z)| \leq |f(a)| \) for each \(z \in D_r(a) \). Show that, under these conditions, \(f(z) = f(a) \) for all \(z \in D_r(a) \). [Hint: Show that, for each \(0 < s < r \), the function

\[
g(t) := |f(a + se^{it})| - |f(a)|
\]

has the two properties that \(g(t) \leq 0 \) for all \(t \), and \(\int_0^{2\pi} g(t) \, dt = 0 \). Use this to conclude that \(|f(z)| \) is constant throughout \(D_r(a) \).]

★32 (a) Suppose \(\phi_1, \phi_2 \) are

- harmonic functions in a bounded domain \(D \).
- continuous functions in \(D \cup \partial D \).

Suppose that \(\phi_1(x, y) = \phi_2(x, y) \) for every \((x, y) \in \partial D \). Explain how we may deduce from this that \(\phi_1(x, y) = \phi_2(x, y) \) for every \((x, y) \in D \). [You may take \(D \) to be simply-connected if you like, but the result holds even without this.]

(b) Suppose we are concerned with the electrostatic potential inside a cable (perhaps coaxial, perhaps not; see the figure at right) in the region between two bounding cylinders. The one cylinder is, perhaps, centered at the origin, making its cross-section \(C_R(0) \), and the other centered at \(z = a \), making its cross-section \(C_r(a) \). We assume \(|a| + r < R \), and that the electrostatic potential is independent of longitudinal coordinate, so it can be viewed as a planar potential in the annular domain \(D \) contained between the two circles \(C_r(a) \) and \(C_R(0) \). It is known that this potential \(u \) satisfies Laplace’s equation \(\nabla^2 u = 0 \) in \(D \). What kind of procedure does part (a) suggest would establish whether two such cables had the same electrostatic potential?
4.1.5 Use the sequence of partial sums of the series \(\sum_{n=0}^{\infty} \left(\frac{1}{n+1+i} - \frac{1}{n+i} \right) \) to show that the series converges and to find the series sum.

4.3.12 (a) Use the formula for geometric series with \(z = re^{i\theta} \), where \(r < 1 \), to show that
\[
\sum_{n=0}^{\infty} z^n = \frac{1 - r \cos \theta + ir \sin \theta}{1 + r^2 - 2r \cos \theta}.
\]
(b) Use part (a) to obtain the expressions
\[
\sum_{n=0}^{\infty} r^n \cos(n\theta) = \frac{1 - r \cos \theta}{1 + r^2 - 2r \cos \theta} \quad \text{and} \quad \sum_{n=0}^{\infty} r^n \sin(n\theta) = \frac{r \sin \theta}{1 + r^2 - 2r \cos \theta}.
\]

⋆33 Expand the given function in a power series centered at the indicated point \(z_0 \). Give the radius of convergence of each.

(a) \(f(z) = \frac{1}{(1+z)^2}, \ z_0 = 0 \). [Hint: Since \((1+z)^{-2} = -\frac{d}{dz} (1+z)^{-1} \), you may start with the power series for \((1+z)^{-1} \) and then use the fact that power series may be differentiated term-by-term.]

(b) \(f(z) = \frac{1}{3-z}, \ z_0 = 3i \)

(c) \(f(z) = \frac{z-1}{3-z}, \ z_0 = 1 \)