Solutions to PS #30

11.1 For each \(n \in \mathbb{N} \), set \(E_n := \{ x \in E \mid f(x) > 1/n \} \), and \(A := \bigcup_n E_n \). We assume that \(f \) is a measurable function, since Rudin has the integral of \(f \) explicitly mentioned in the problem statement. (He also mentions \(\mu(E_n) \) and \(\mu(A) \), expressions which would not make sense if each \(E_n, A \) were not measurable. The easiest way to ensure the measurability of all these sets is to assume that \(f \) is measurable.) We note that an \(x \in E \) satisfies \(f(x) > 0 \) \(\iff \) \(x \in A \). Thus, we wish to show that \(\mu(A) = 0 \).

Claim: \(\mu(A) = 0 \iff \mu(E_n) = 0, \forall n. \)

That \(\mu(A) = 0 \Rightarrow \mu(E_n) = 0, \forall n \) is clear, since \(E_n \subset A, \forall n \), and \(\mu \) is monotone. Now, suppose that each \(\mu(E_n) = 0 \). Notice that \(E_1 \subset E_2 \subset E_3 \subset \cdots \). We disjunctify the sets \(E_n \), setting

\[
A_1 = E_1, \\
A_2 = E_2 \setminus E_1 = f^{-1}\left(\left(\frac{1}{2}, 1\right]\right) \in \mathcal{M}, \\
\vdots \\
A_n = E_n \setminus E_{n-1} \in \mathcal{M}, \\
\vdots
\]

Then \(A = \bigcup_n A_n \), with each \(A_n \) measurable, \(A_n \subset E_n \) (so \(\mu(A_n) = 0, \forall n \), by monotonicity), and \(A_i \cap A_j = \emptyset \) for \(i \neq j \). So, by \(\sigma \)-additivity,

\[
\mu(A) = \sum_{n=1}^{\infty} \mu(A_n) = 0.
\]

This proves the claim.

Now, we show that \(\mu(E_n) = 0, \forall n \). We do so by contradiction. Suppose that \(\exists n \in \mathbb{N} \) s.t. \(\mu(E_n) > 0 \). Let

\[
s(x) = \begin{cases}
1/n, & \text{if } x \in E_n, \\
0, & \text{otherwise.}
\end{cases}
\]

Clearly, \(s \) is simple, measurable and \(0 \leq s \leq f \). Thus,

\[
\int_E f \, d\mu \geq \int_A f \, d\mu \geq I_A(s) = \frac{1}{n} \mu(E_n) > 0.
\]

The result now follows from the claim.

*46. See class notes.