Solutions to PS #6

2.22 First, we claim that \mathbb{Q}^k is countable. To prove this, let $f: \mathbb{Q} \to \mathbb{N}$ be a one-to-one correspondence (i.e., f is one-to-one and onto) between \mathbb{Q} and \mathbb{N}. (We know such an f exists, since \mathbb{Q} is countable.) Let p_1, p_2, \ldots, p_k be distinct prime numbers (OK, since the set of prime numbers is infinite). Define $g: \mathbb{Q}^k \to \mathbb{N}$ by

$$g(q_1, q_2, \ldots, q_k) := p_1^{f(q_1)} p_2^{f(q_2)} \cdots p_k^{f(q_k)}.$$

(Here each $q_j \in \mathbb{Q}$.) That g is a one-to-one function follows from the fundamental theorem of algebra and the fact that f is one-to-one. Since \mathbb{Q}^k is an infinite set, and since countable infinity (\aleph_0) is the smallest infinite cardinal number, our claim is proved.

Our goal is to show that \mathbb{R}^k is separable. We will show that \mathbb{Q}^k is dense in \mathbb{R}^k, and the result follows from that. Let $a \in \mathbb{R}^k$ and $r > 0$ be given. By a previous problem (Problem *1 on PS 5), if we show $B(a, r) \cap \mathbb{Q}^k \neq \emptyset$, then we are done. Let a_j denote the jth component of a, $j = 1, \ldots, k$. For each j, consider the interval $(a_j - r/\sqrt{k}, a_j + r/\sqrt{k})$. Since \mathbb{Q} is dense in \mathbb{R}, $\exists q_k \in (a_j - r/\sqrt{k}, a_j + r/\sqrt{k}) \cap \mathbb{Q}$. Let $q = (q_1, \ldots, q_k)$. Our construction guarantees that q lies inside the k-dimensional “cube” centered at a having side-length $2r/\sqrt{k}$. The diameter of this cube is $2r$, which means it lies inside $B(a, r)$. Thus, \mathbb{Q}^k is dense in \mathbb{R}^k.

*1. First, we assume that E is totally bounded. Take $\epsilon = 1$. By assumption, \exists sets E_1, \ldots, E_n s.t. $\text{diam}(E_j) < 1$, $\forall j$, and $E \subset E_1 \cup E_2 \cup \cdots \cup E_n$. Choose $a_j \in E_j$, $j = 1, \ldots, n$, and set $r := \max\{d(a_1, a_2), d(a_1, a_3), \ldots, d(a_1, a_n)\}$. Then $E \subset B(a_1, r + 1)$ since, for $x \in E$, \exists some m s.t. $x \in E_m$, and

$$d(a_1, x) \leq d(a_1, a_m) + d(a_m, x) < r + 1.$$

This proves that E is bounded.

We now assume that $X = \mathbb{R}^k$ and that E is bounded. Then E is contained in some ball $B(0, R) \subset [-R, R]^k$. Let $\epsilon > 0$. We partition $[-R, R]$ into N subintervals of length less than ϵ/\sqrt{k}. Then $[-R, R]^k$ is the union of the resulting N^k “sub-cubes”, all with diameter less than $\sqrt{k} \cdot \epsilon/\sqrt{k} = \epsilon$. Thus, $[-R, R]^k$ (and E) are totally bounded.

For an example of a bounded set that is not totally bounded, take the set of natural numbers \mathbb{N} with the $d_{0,1}$ metric. $(\mathbb{N}, d_{0,1})$ is bounded, since $\mathbb{N} \subset B(1, 2) := \{n \in \mathbb{N} | d_{0,1}(n, 1) < 2\}$. However, no finite collection of sets having diameter $(1/2)$ (as measured with the $d_{0,1}$ metric) can contain \mathbb{N}.

2. Suppose \(\text{dist}(F, K) = 0 \). Then \(\forall n \in \mathbb{N}, \exists a_n \in F, b_n \in K \) s.t. \(d(a_n, b_n) < 1/n \). Let \(B := \{ b_n | n \in \mathbb{N} \} \), which is perhaps a finite set. If \(B \) is finite, then \(\exists \) some \(b \in K \) such that \(b_n = b \) for infinitely many \(n \in \mathbb{N} \). If \(B \) is infinite, then since \(K \) is compact, \(B \) has a limit point \(b \in K \) (by Thm. 2.41). In either case, \(\exists \) a subsequence \((b_{n_k}) \) of \((b_n) \) such that \(b_{n_k} \to b \) as \(k \to \infty \).

We claim that \(a_{n_k} \to b \) as \(k \to \infty \) as well. To prove this, let \(\epsilon > 0 \). We choose \(N_0 \in \mathbb{N} \) s.t., for \(k \geq N_0 \), \(d(b_{n_k}, b) < \epsilon/2 \). Since \(d(a_{n_k}, b_{n_k}) < 1/n_k \), we choose \(N_1 \in \mathbb{N} \) s.t. \(n_k > 1/\epsilon \), for \(k \geq N_1 \). Now take \(N = \max\{N_1, N_2\} \). For \(k \geq N \),

\[
d(a_{n_k}, b) \leq d(a_{n_k}, b_{n_k}) + d(b_{n_k}, b) \leq \frac{1}{n_k} + \frac{\epsilon}{2} < \epsilon.
\]

This proves the claim.

As a result of the claim and the fact that \(F \) is closed, \(b \in F \). But \(b \in K \), and this means that \(F \cap K \neq \emptyset \).

The result does not hold if both \(F \) and \(K \) are assumed to be closed in \(X \) (but not compact). To illustrate this, let

\[
X = \{ x | -1 \leq x \leq 1 \} \setminus \{ 0 \}, \quad F = [-1, 0), \quad \text{and} \quad K = (0, 1].
\]

Both \(F \) and \(K \) are closed in \(X \), they are disjoint, but \(\text{dist}(F, K) = 0 \).

3. We have the following information, assembled into a table:

<table>
<thead>
<tr>
<th>Passing from</th>
<th># of intervals removed</th>
<th>size of each removed interval</th>
<th>total removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_0) to (E_1)</td>
<td>1</td>
<td>(3^{-1})</td>
<td>(1/3)</td>
</tr>
<tr>
<td>(E_1) to (E_2)</td>
<td>2</td>
<td>(3^{-2})</td>
<td>(2/9)</td>
</tr>
<tr>
<td>(E_2) to (E_3)</td>
<td>4</td>
<td>(3^{-3})</td>
<td>(4/27)</td>
</tr>
<tr>
<td>(E_3) to (E_4)</td>
<td>8</td>
<td>(3^{-4})</td>
<td>(8/81)</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(E_{n-1}) to (E_n)</td>
<td>(2^{n-1})</td>
<td>(3^{-n})</td>
<td>((1/3)(2/3)^{n-1})</td>
</tr>
</tbody>
</table>

Thus, the sum of the lengths of intervals removed is

\[
\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \ldots = \sum_{n=1}^{\infty} \left(\frac{1}{3} \right) \left(\frac{2}{3} \right)^{n-1} = \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{2}{3} \right)^n
\]
\[
\begin{align*}
\frac{1}{3} \left(\frac{1}{1 - 2/3} \right) &= \left(\frac{1}{3} \right) \\
&= \left(\frac{1}{3} \right) \cdot 3 \\
&= 1.
\end{align*}
\]

*4. Write the ternary expansions of \(x \) and \(y \) as

\[
x = (0.x_1x_2x_3x_4 \ldots)_3 \quad \text{and} \quad y = (0.y_1y_2y_3y_4 \ldots)_3,
\]

with each \(x_n, y_n \in \{0, 1, 2\} \). Let \(S = \{n \mid x_n \neq y_n\} \). Observe that, if \(x \neq y \), then \(S \) is nonempty, in which case \(S \) has a smallest element, say \(N \) (by the Well-Ordering Principle). Suppose \(y_N > x_N \). Then

\[
y - x = \sum_{k=N}^{\infty} (y_k - x_k)3^{-k} \\
= (y_N - x_N) 3^{-N} + \sum_{k=N+1}^{\infty} (y_k - x_k)3^{-k} \\
= (y_N - x_N) 3^{-N} + 3^{-(N+1)} \sum_{k=0}^{\infty} (y_{k+N+1} - x_{k+N+1})3^{-k} \\
\geq (y_N - x_N) 3^{-N} - (2)(3^{-(N+1)}) \sum_{k=0}^{\infty} 3^{-k} \\
\geq 3^{-N} - (2)(3^{-(N+1)}) \sum_{k=0}^{\infty} 3^{-k} \\
= 3^{-N} - (2)(3^{-(N+1)}) \frac{1}{1 - 1/3} \\
= 3^{-N} - (2)(3^{-(N+1)}) \frac{3}{2} \\
= 0.
\]

Notice that, to get equality \(y = x \), we must have equality at the two places where \(\geq \) appears above, and this is possible if and only if

\[
y_N = 1 + x_N, \quad y_n = 0, \; \forall n > N, \quad \text{and} \quad x_n = 2, \; \forall n > N.
\]

It also shows that, at the first digit where the two numbers \(x \) and \(y \) differ, the one with the larger digit is greater than or equal to the other number.

Now, suppose that \(x < y \), and let \(N \) be as before. By the above, at least one of the following does not hold:
Suppose that (i) does not hold. Then \(y_N = 2\) and \(x_N = 0\). In this case, we may take \(z = (0.y_1y_2 \ldots y_{N-1}1111 \ldots)_3\).

Suppose next that (ii) does not hold. Choose \(n_0 > N\) s.t. \(y_{n_0} \neq 0\). If \(y_{n_0} = 2\), we may take \(z = (0.y_1y_2 \ldots y_{n_0-1}1111 \ldots)_3\). If \(y_{n_0} = 1\), we may take \(z = (0.y_1y_2 \ldots y_{n_0-1}01111 \ldots)_3\).

Suppose next that (iii) does not hold. Choose \(n_0 > N\) s.t. \(x_{n_0} \neq 2\). If \(x_{n_0} = 0\), we may take \(z = (0.x_1x_2 \ldots x_{n_0-1}1111 \ldots)_3\). If \(x_{n_0} = 1\), we may take \(z = (0.x_1x_2 \ldots x_{n_0-1}21111 \ldots)_3\).