1. If we combine our assertion (made without proof) in class that the collection $S = \{1, \cos(\pi x), \sin(\pi x), \cos(2\pi x), \sin(2\pi x), \ldots\}$ is a complete orthogonal set on $L^2(-1, 1)$ with the results of Exercise 3.15 (see Problem Set 8), then we get that any function $f \in L^2(-1, 1)$ is equal on $[-1, 1]$ (in the mean-square convergence sense) to its Fourier series

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(k\pi x) + b_k \sin(k\pi x)],$$

with

$$a_k = \int_{-1}^{1} f(x) \cos(k\pi x) \, dx \quad \text{and} \quad b_k = \int_{-1}^{1} f(x) \sin(k\pi x) \, dx.$$

More generally, given any function $f \in L^2(-\ell, \ell)$ with $\ell > 0$, then on $[-\ell, \ell]$ we have

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} [a_k \cos(k\pi x/\ell) + b_k \sin(k\pi x/\ell)],$$

(with equality, again, understood in the mean-square convergence sense), with the slightly altered formulas for the Fourier coefficients

$$a_k = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos(k\pi x/\ell) \, dx \quad \text{and} \quad b_k = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin(k\pi x/\ell) \, dx.$$

I have written functions in Octave which can help demonstrate this. The script `fourierCoeffs.m` must be called with three arguments: the function whose Fourier series we seek, the value of ℓ, and the number of Fourier coefficients to calculate.

Typing commands in Octave such as

```
octave:1> function y = f(x)
  > y = (-x-1.5).*(x<-1.5) + (x+.5).*(x>-0.5 & x<0.5) + ...
  > (x>=.5 & x<1.5) + (2.5-x).*(x>=1.5);
  > end

octave:2> [ak_s, bk_s] = fourierCoeffs('f', 2, 5);
```

will return the coefficients a_0, \ldots, a_5 stored in a length-6 vector `ak_s` and the coefficients b_1, \ldots, b_5, stored in the length-5 vector `bk_s`. Armed with the Fourier coefficients $a_0, \ldots, a_N, b_1, \ldots, b_N$, one might wish to plot the truncated Fourier series $a_0/2 + \sum_{k=1}^{N} [a_k \cos(k\pi x/\ell) + b_k \sin(k\pi x/\ell)]$ of f. The code...
octave:3> x = [-2:.01:2]’;
octave:4> plot(x, f(x), ’b’, x, fs_approx(’f’, x, 2, 7), ’r’)

will plot both the function f (which we had already defined) and the truncated Fourier series (here with $N = 7$) on the same graph for $x \in [-2, 2]$. (Note that `fs_approx.m` is another script which takes care of calling the script `fourierCoeffs.m`, so that no prior call to the latter is required.)

(a) Download the OCTAVE scripts mentioned above, as well as `f_times_cosine.m`, `f_times_sine.m` and `my_quadg.m`, all found at http://www.calvin.edu/~scofield/courses/m333/materials/octave/, placing them in your working directory (the one from which you start OCTAVE). You will see calls to all three of the latter scripts made from within `fourierCoeffs.m`. In particular, `my_quadg.m` does pretty much what the OCTAVE function `quad` does (see Problem Set 3), with the important additional feature that any arguments beyond the first 5 are passed directly along to the function being integrated. The reason this is necessary: the Fourier coefficients come from integrals with integrands like $f(x) \cos(k\pi x/\ell)$ and $f(x) \sin(k\pi x/\ell)$. Such integrands really require two inputs: the x where we wish to evaluate them, and the integer k. Notice that both these inputs are accepted by the script `f_times_sine.m` (along with two additional arguments), and that the call within `fourierCoeffs.m` to `my_quadg.m` includes 3 additional arguments (beyond the 5 that `quad` would have accepted) which are simply passed on to the integrand. (FYI: I believe that `my_quadg.m` will run correctly on all machines, but am not certain. If the OCTAVE command `which quadg` returns a path to a currently-installed script called `quadg.m` rather than an error message, things should be fine.) Experiment with different calls to `fs_approx.m`, such as the one above. Try changing the number of terms included in the truncated Fourier series to see how increases in the number of terms affects the approximation. (Warning: Don’t bump up the number of terms included by too much at once until you get a feel for how long it takes to produce the corresponding plots.) Then run commands like

octave:5> x = [-2:.01:2]’;
octave:6> plot(x, f(x), ’b’, x, fs_approx(’f’, x, 1, 7), ’r’)

octave:7> x = [-4:.01:4]’;
octave:8> plot(x, f(x), ’b’, x, fs_approx(’f’, x, 2, 7), ’r’)

and the like. Explain the phenomena you witness. In particular, describe what happens when the ℓ included in the call to `fs_approx.m` is smaller than half the width of the interval discretized in the vector x, and explain this behavior. Do you witness any instances of Gibbs’ phenomenon (described in Section 9.3 of our text, or at http://en.wikipedia.org/wiki/Gibbs_phenomenon)? Does the phenomenon disappear as you include more terms? Where can it be expected to occur?
(b) We have asserted that \(\{ \sin(k\pi x/\ell) \}_{k=1}^{\infty} \) is a complete orthogonal set in \(L^2(0, \ell) \).
Write your own script `fourierSineCoeffs.m` which takes exactly the same inputs as `fourierCoeffs.m`, and returns the appropriate coefficients so that, for a user-specified \(f \in L^2(0, \ell) \),
\[
f(x) = \sum_{k=1}^{\infty} b_k \sin(k\pi x/\ell)
\]
holds (in the mean-square convergence sense) on the interval \([0, \ell]\). Then write a function `fsSine_approx.m` that plays a role analogous to `fs_approx.m`. Fix \(\ell = 1 \), choose \(f(x) = 1 \), and plot various truncated Fourier sine series approximations.
Change the number of terms kept in the truncated series, as well as the size of the interval of \(x \)-values on which you plot \(f \) and its series together. (At least look at plots in \([-1, 1]\) and an interval that is twice as wide but contains \([-1, 1]\].) Repeat the process for \(f(x) = x \). Just what function, exactly, is the truncated series converging to, in each case?

(c) Repeat the process above, this time using the complete orthogonal set \(\{ 1, \cos(k\pi x/\ell) \}_{k=1}^{\infty} \), writing scripts `fourierCosineCoeffs.m` and `fsCosine_approx.m` and testing them out with the same functions \(f \).

2. A. Do Exercise 8.2.

B. Use this result to explain why, if \(f \) were an odd function on \([-\ell, \ell]\), one would expect half of the coefficients returned by the script `fourierCoeffs.m` (in the previous problem) to be zero. Which half? What if \(f \) were an even function?

3. Do Exercise 8.19, part (a).

4. In this exercise we explore the properties of a complete orthonormal system on \((-\infty, \infty)\) called the Haar wavelets. Let \(\phi \) be the function
\[
\phi(x) = \begin{cases}
1, & \text{if } x \in [0, 1), \\
0, & \text{otherwise}.
\end{cases}
\]
Let \(\psi(x) = \phi(2x) - \phi(2x-1) \). The Haar wavelets are the (doubly-subscripted) functions
\[
\psi_{mn}(x) := 2^{m/2} \psi(2^m x - n), \quad m, n = 0, \pm 1, \pm 2, \ldots.
\]

(a) Sketch graphs (you may do so by hand if you like) for \(\psi \) and \(\psi_{mn}, m, n = 0, \pm 1, \pm 2 \) (representatives from this range of \(m, n \)).

(b) Prove that the \(\psi_{mn} \) are mutually orthogonal and that they are normalized (i.e., that \(\|\psi_{mn}\|_{L^2(\mathbb{R})} = 1 \) for each \(m, n \)). Note that the word orthonormal means orthogonal + normal.

(c) Suppose \(f \in L^2(\mathbb{R}) \). The completeness of the Haar wavelets means that \(f \) has a generalized Fourier series expansion
\[
f(x) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} c_{mn} \psi_{mn}(x).
\]
Find a formula (integral form, but simplified as much as possible) for the coefficients c_{mn}.

5. In class we considered a sequence of “hat”-shaped functions $\{g_n(\cdot)\}_{n=1}^{\infty}$ restricted to the domain $0 \leq x \leq 1$ that converges pointwise on $[0, 1]$ to the zero function. A formula for these functions is

$$g_n(x) := \begin{cases}
2^n x, & \text{if } 0 \leq x < 2^{-n}, \\
2 - 2^n x, & \text{if } 2^{-n} \leq x < 2^{1-n}, \\
0, & \text{if } 2^{1-n} \leq x \leq 1.
\end{cases}$$

(a) Show that $g_n \to 0$ (converges to the zero function) in the mean-square sense.

(b) Find a sequence of functions $\{f_n(\cdot)\}_{n=1}^{\infty}$ that converges pointwise on $[0, 1]$ to the zero function, but does not converge to the zero function in the mean square. Do you think that all such examples of sequences $\{f_n(\cdot)\}_{n=1}^{\infty}$ must satisfy $\|f_n\|_{\infty} \to \infty$ as $n \to \infty$? If so, can you prove it?

Our hat-function example from class showed that it is possible for a sequence of functions to converge pointwise without converging uniformly. Part (b) indicates that pointwise convergence is possible without mean square convergence. Our example with the power functions $g_n(x) = x^n$ restricted to the interval $[0, 1]$ showed that mean square convergence is possible without pointwise convergence. However, Proposition 9.1 establishes that, at least on closed intervals $[a, b]$ of finite length, uniform convergence always implies the other two.