MATH 232: Engineering Mathematics

Reading Guide for LAS, Section 1.3: Affine Transformations

Goals:
1. To be able to describe the fundamental types of affine transformations in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \), and to be able to find an appropriate matrix \(A \) for which the mapping \(x \mapsto Ax \) gives these transformations.
2. To be able to take a verbal description of an affine transformation and break it up into the composition of fundamental ones.

Read: Section 1.3 of LAS

Terms to know:
- affine transformations, homogeneous coordinates, unit vector, the mapping \((v \mapsto Av) : \mathbb{R}^n \to \mathbb{R}^m \) corresponding to a given \(m \)-by-\(n \) matrix \(A \)

Questions you should be able to answer:
1. For which type(s) of affine transformations of the plane does one need to employ homogeneous coordinates?

2. Suppose you wished to move every point \((x, y)\) of the plane to a new point \((x', y')\) which was 1 unit higher and 2 units to the left of the reflection of \((x, y)\) across the line \(y = x\). How could you achieve this through matrix multiplication?

3. For what matrix \(A \) would \(Av \) have a
 - 1\(^{\text{st}}\) coordinate that was three times as long as that of \(v \),
 - 2\(^{\text{nd}}\) coordinate that was half as long as that of \(v \),
 - 3\(^{\text{rd}}\) coordinate that was twice as long as that of \(v \) and opposite in sign to it,
 for each \(v \in \mathbb{R}^3 \)?