Reading Questions for Boyce and DiPrima, Section 7.4

[Submit your responses by 3 am, Fri., Apr. 12, using the webform below.]

1. Much of the theory of solving linear 1st-order systems of DEs

\[\frac{d}{dt}x(t) = P(t)x + g(t), \]

should sound familiar. In particular, one solves the complementary (homogeneous) problem

\[\frac{d}{dt}x(t) = P(t)x \]

first and, to do that, you seek \(n \) (I’m assuming \(P \) is an \(n \)-by-\(n \) matrix) linearly independent (vector function) solutions \(\{x^{(1)}, \ldots, x^{(n)}\} \) to serve as a fundamental set of solutions, and which serve as the building blocks (via linear combinations) for all solutions of the homogeneous problem. If you have \(n \) such vector function solutions, one can check linear independence via a Wronskian, as in Chapter 3. But the Wronskian is built a little differently. Consider the three vector functions

\[
x^{(1)}(t) = e^{-t} \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \quad x^{(2)}(t) = e^t \begin{bmatrix} -2 \\ 2 \\ 1 \end{bmatrix}, \quad \text{and} \quad x^{(3)}(t) = e^{2t} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix},
\]

which all solve the 1st order system

\[
\frac{d}{dt}x = \begin{bmatrix} 11/9 & -2/9 & 8/9 \\ -2/9 & 2/9 & 10/9 \\ 8/9 & 10/9 & 5/9 \end{bmatrix} x.
\]

What does the Wronskian \(W[x^{(1)}, x^{(2)}, x^{(3)}](t) \) look like? Is there a situation in which the Wronskians of both Chapters 4 and 7 would agree?

2. Identify one item (a concept, a step in an example, a statement, etc.) from this reading assignment you found difficult or confusing.