Peer Questions for Section 8.1

In your group (minimum of two people per), discuss your responses to the following questions. Rotate (again) the role of “group scribe”, a person who should submit your group’s responses, using the web form below, by 5 pm, Wed., Oct. 2.

1. Fill in the blanks:

 A sequence is a function whose domain is _________________.
 The only limit it makes sense to consider for a given sequence a_n is the limit as ____________.

2. The section is filled with definitions and theorems about sequences. Since sequences are really functions, these simply serve as reminders of definitions/theorems you encountered early on in your study of calculus. Your task here is to establish a mapping between numbered boxes in Section 8.1 and those in Chapter 1. For instance, Box 1 on p. 427 defines the terms convergent and divergent in regards to sequences, and establishes notation for convergent sequences. The (closest) match for this in Chapter 1 is Box 3 on p. 59. Complete the associations for other boxes in the section.

<table>
<thead>
<tr>
<th>Section 8.1 Reference</th>
<th>Chapter 1 Section No.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 1</td>
<td>1.6</td>
<td>Box 3</td>
</tr>
<tr>
<td>Box 2</td>
<td>(a) ___________</td>
<td>(b) _________</td>
</tr>
<tr>
<td>Box 5</td>
<td>(c) ___________</td>
<td>(d) _________</td>
</tr>
<tr>
<td>Limit Laws (top, p. 429)</td>
<td>(e) ___________</td>
<td>(f) _________</td>
</tr>
<tr>
<td>Squeeze Thm. (middle, p. 429)</td>
<td>(g) ___________</td>
<td>(h) _________</td>
</tr>
<tr>
<td>Continuity & Convergence Thm. (p. 430)</td>
<td>(i) ___________</td>
<td>(j) _________</td>
</tr>
</tbody>
</table>

3. If sequences are really just functions of a special type, and if most of the ideas and results for sequences are applications of ideas/results we knew to hold generally for functions, one might wonder, “Is there some benefit in studying them?” In the days to come, I hope you will see several satisfactory answers to this question. But I wish to suggest, even at the outset, that the question is wrong-headed. Through much of calculus to this point, we have done problems which presumed we had some base formula $f(x)$ for a desired quantity (perhaps the depth of a pond at position x, or the velocity of a car at time x, etc.) which yields the value at any x we wish. Real-life problems do not come with such formulas. If we obtain numbers at all, they come to us as data (perhaps as two sequences, one providing the x-coordinate and the other sequence giving the corresponding y-coordinates) and, if we obtain a formula at any stage, it serves as a mathematical model for the data.

Think of an example from your life where you pay attention to a sequence of numbers.
4. The last problem is not meant to disparage the topics from calculus—those requiring a
mathematical model—prior to Chapter 8. Quite the contrary, Chapters 1–7 have provided
us with tools we might use to answer questions about sequences. Example 4 provides one
instance of this; compare it with Example 5 on p. 62.

Example 5 (back in Section 8.1) provides another instance. It rests on the fact that the graph
of \(f(x) = \frac{\ln x}{x} \) (with domain \(0 < x < \infty \)) passes through the points of the graph of the
sequence \(a_n = \frac{\ln n}{n} \), and hence serves as a mathematical model for the behavior exhibited
by that sequence. To get the limit of the sequence, then, we can take the limit \(\lim_{x \to \infty} \frac{\ln x}{x} \),
which is easily done using L'Hospital's Rule).

Indicate whether the statement is true or false.

(a) ______ Let us suppose \((a_n)_{n=1}^{\infty} \) is some given sequence, and that \(f(x) \) is a function
defined for all \(0 \leq x \leq \infty \) whose graph passes through all points on the graph of the
sequence. If \(\lim_{x \to \infty} f(x) = L \), then \(\lim_{n \to \infty} a_n = L \), too.

(b) ______ Given any two functions \(f \) and \(g \), defined on \(0 \leq x \leq \infty \), where each passes
through the points on the graph of a given sequence \((a_n)_{n=1}^{\infty} \), both \(f \) and \(g \) will have the
same limit as \(x \to \infty \).

(c) ______ If we have a formula involving \(n \) for a sequence (like one of those for \(a_n \) in the
bottom middle of p. 425), we can always find \(\lim_{n \to \infty} a_n \) by first converting our formula in
\(n \) to a formula in \(x \), considering the domain for this latter expression to be expanded to
all of \(0 \leq x < \infty \), and evaluating the limit of this latter function as \(x \to \infty \).

5. For this particular evening’s questions, send me your answers individually ahead of time
using the web form. (Make sure I receive them before the start of next class period, Wed.,
Oct. 2.) Once you have discussed them in group on that day, follow the usual procedure,
having a scribe send me the group’s answers.

6. Identify one item (a concept, a step in an example, a statement, etc.) from this reading
assignment you found difficult or confusing.