Patriot’s Day – Multiple Linear Regression, Inferences

1. Setting:
 (a) k independent variables x_1, \ldots, x_k. One dependent variable y.
 (b) n data points: $(x_{11}, \ldots, x_{k1}, y_1), \ldots, (x_{1i}, \ldots, x_{ki}, y_i), \ldots, (x_{1n}, \ldots, x_{kn}, y_n)$.

2. The standard linear statistical model (lm in R)
 (a) $y_i = \beta_0 + \beta_1 x_{1i} + \cdots + \beta_k x_{ki} + e_i$ (So $\beta_0 + \beta_1 x^*_1 + \cdots + \beta_k x^*_k$ is the mean value of y for a fixed tuple (x^*_1, \ldots, x^*_k) of independent variables.)
 (b) The errors, e_i have mean 0, variance σ^2, and are independent.
 (c) The random variables e_i have normal distributions.

3. Confidence intervals for the parameters β_j.
 (a) Statistical software gives estimates b_j for β_j and estimates s_{b_j} of the standard deviation of b_j.
 (b) Then $\frac{b_j - \beta_j}{s_{b_j}}$ has a t-distribution with $n - (k + 1)$ degrees of freedom.
 (c) A confidence interval for any β is $b + t^* s_b$ where t^* is the critical value for a t-distribution with $n - (k + 1)$ degrees of freedom.
 (d) Similarly, we can get confidence intervals and prediction intervals for fixed (x^*_1, \ldots, x^*_k).
 (e) Cautions: the declining confidence in multiple confidence intervals; the interpretation of a confidence interval in the presence of other coefficients.

4. An alternate way to interpret the output - Testing the “hypothesis” that $\beta = 0$.
 (a) If $\beta = 0$, $t = b/s_b$ has a t-distribution with $n - (k + 1)$ degrees of freedom.
 (b) The probability that a random variable with a t-distribution is at least as great as t is called the p-value of the statistic.
 (c) The p-value is a measure of how “surprising” that a t-value this extreme occurred. If the p-value is very small, we doubt that $\beta = 0$. Otherwise, we think that $\beta = 0$ is consistent with the data.
 (d) Computing p-values is directly related to computing confidence intervals and a p-value doesn’t provide as much information as a confidence interval.

5. Adjusted R^2. R^2 will increase as we add more variables to the model. To correct for this, there is a statistic called adjusted R^2:
 \[
 \text{adj}-R^2 = 1 - \frac{\text{SSResid}/(n - (k + 1))}{\text{SSTotal}/(n - 1)}
 \]

Homework

Read Devore and Farnum Section 11.5, pages 525–527, 530–532.

1. In the data section of the course website is a datafile consisting of the scores of 32 students of Mathematics 222 on three tests and a final exam. In this question we investigate using the test scores to predict the final exam score. (After all, if the test scores do a good enough job, I wouldn’t have to grade the final exam!)
 (a) Write a linear function $\text{Exam} = b_0 + b_1 \text{Test1} + b_2 \text{Test2} + b_3 \text{Test3}$ that can be used to predict the final exam score from the three test scores.
 (b) Write a 95% confidence interval for the parameter β_1 in the model corresponding to our estimate b_1.
 (c) Do the p-values for the coefficients lead you to suspect that one or more of the β_i are not very useful in the model? Explain.
 (d) For each of the three independent variables, fit a linear function that does not include that variable. Compare the values of adj-R^2 for each those models to each other and to the full model. Which model would you use to predict exam scores and why?
 (e) If a student scores 85 on each test, what is the predicted exam score? What is a 90% confidence interval for that prediction?