March 16 — Confidence intervals for proportions

1. Suppose \(x \) is the number of successes in \(n \) trials of a Bernoulli process with probability of success \(\pi \). Then \(x \) has the binomial distribution with parameters \(n \) and \(\pi \).

2. \(\hat{\pi} = p = x/n \) is an unbiased estimator for \(\pi \).

3. The distribution of \(p \) has mean \(\pi \) and variance \(\pi(1 - \pi)/n \).

4. For large \(n \), the central limit theorem then implies that the following random variable is approximately normal with mean 0 and variance 1:

\[
\frac{p - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}
\]

so a 95% confidence interval can be found by solving

\[-1.96 < \frac{p - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} < 1.96
\]

for an interval of form \(a(p) < \pi < b(p) \).

5. Three different confidence intervals based on this:

 (a) Sloppy - replace \(\pi \) in the denominator by \(p \) (some books do this)

 (b) R (\texttt{prop.test}): solve the equation directly for an inequality of form \(a(p) < \pi < b(p) \). (Use the quadratic equation.)

 (c) R (with continuity correction, \texttt{prop.test} default): solve the equation after realizing that \(x \) is really between \(x - \frac{1}{2} \) and \(x + \frac{1}{2} \).

6. Exact confidence intervals are also available in R (\texttt{binom.test}). These are called exact but are not really exact. They do have the property however that a 95% confidence interval is at least a 95% confidence interval.

7. Confidence intervals for differences in proportions can also be computed by the same approximations (R \texttt{prop.test}).

8. Determining sample sizes to ensure given confidence levels. (See Gallup poll.)

Homework

1. Read Devore and Farnum, Section 7.3, pages 303–306.

2. Do problems 7.22, 24, 26, 28.