March 10 - An introduction to confidence intervals

1. Setting:
 (a) \(X \) is a random variable with unknown distribution.
 (b) \(X_1, \ldots, X_n \) is a random sample from \(X \) (independent and identically distributed random variables.)

2. Key fact used: for large \(n \), \(\bar{X} \) has a distribution that has mean \(\mu \), variance \(\sigma^2/n \), and that is approximately normal. Therefore the following random variable is approximately normal with mean 0 and standard deviation 1.

\[
Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}
\]

3. Using \(Z \) and algebra we have

\[
P\left(\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96 \frac{\sigma}{\sqrt{n}}\right) \approx .95
\]

(The symbol \(\approx \) means approximately equal and is because of the central limit theorem. IF \(X \) is normal, then this probability statement exact.)

4. But \(\sigma \) is not known. If \(n \) is large, use \(S \) to approximate \(\sigma \). Then

\[
P\left(\bar{X} - 1.96 \frac{S}{\sqrt{n}} < \mu < \bar{X} + 1.96 \frac{S}{\sqrt{n}}\right) \approx .95
\]

There are now two approximations here, one using the CLT and the other using \(S \) to approximate \(\sigma \).

5. The interval \([\bar{X} - 1.96 \frac{S}{\sqrt{n}}, \bar{X} + 1.96 \frac{S}{\sqrt{n}}]\) is called a 95% confidence interval for \(\mu \). Important: our confidence is not in the interval but in the procedure for producing the interval. Approximately 95% of the 95% confidence intervals that we produce will successfully capture \(\mu \).

6. Other confidence intervals: other percentages; one sided.

7. Work to do: What’s with all these approximations?

Homework, Due Tuesday, March 22

1. Read Devore and Farnum, Section 7.2

2. Do problems 7.8,9,10,12,14 of Devore and Farnum.