CHAPTER 3

Section 3.1

1.

<table>
<thead>
<tr>
<th>S:</th>
<th>FFF</th>
<th>SFF</th>
<th>FSF</th>
<th>FFS</th>
<th>FSS</th>
<th>SFS</th>
<th>SSF</th>
<th>SSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>X:</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

2.

X = 1 if a randomly selected book is non-fiction and X = 0 otherwise
X = 1 if a randomly selected executive is a female and X = 0 otherwise
X = 1 if a randomly selected driver has automobile insurance and X = 0 otherwise

3.

M = the difference between the large and the smaller outcome with possible values 0, 1, 2, 3, 4, or 5; W = 1 if the sum of the two resulting numbers is even and W = 0 otherwise, a Bernoulli random variable.

4.

In my perusal of a zip code directory, I found no 00000, nor did I find any zip codes with four zeros, a fact which was not obvious. Thus possible X values are 2, 3, 4, 5 (and not 0 or 1). X = 5 for the outcome 15213, X = 4 for the outcome 44074, and X = 3 for 94322.

5.

No. In the experiment in which a coin is tossed repeatedly until a H results, let Y = 1 if the experiment terminates with at most 5 tosses and Y = 0 otherwise. The sample space is infinite, yet Y has only two possible values.

6.

Possible X values are 1, 2, 3, 4, … (all positive integers)

<table>
<thead>
<tr>
<th>Outcome:</th>
<th>RL</th>
<th>AL</th>
<th>RAARL</th>
<th>RRRRL</th>
<th>AARRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>X:</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Chapter 3: Discrete Random Variables and Probability Distributions

7.

a. Possible values are 0, 1, 2, ..., 12; discrete

b. With \(N = \# \) on the list, values are 0, 1, 2, ..., \(N \); discrete

c. Possible values are 1, 2, 3, 4, ...; discrete

d. \(\{ x : 0 < x < \infty \} \) if we assume that a rattlesnake can be arbitrarily short or long; not discrete

e. With \(c = \) amount earned per book sold, possible values are 0, \(c \), 2\(c \), 3\(c \), ..., 10,000\(c \); discrete

f. \(\{ y : 0 < y < 14 \} \) since 0 is the smallest possible pH and 14 is the largest possible pH; not discrete

g. With \(m \) and \(M \) denoting the minimum and maximum possible tension, respectively, possible values are \(\{ x : m < x < M \} \); not discrete

h. Possible values are 3, 6, 9, 12, 15, ... -- i.e. \(3(1), 3(2), 3(3), 3(4), ... \) giving a first element, etc.; discrete

8. \(Y = 3 : SSS; \quad Y = 4 : FSSS; \quad Y = 5 : FFSSS \), \(SFSSS; \quad Y = 6 : SSFSSS, SFFSSS, FSFSSS, FFFSS; \quad Y = 7 : SSFFS, SFSFFS, SFFFS, FSSFSS, FSFFSS, FFFSS, FFFFFSSS \)

9.

a. Returns to 0 can occur only after an even number of tosses; possible S values are 2, 4, 6, 8, ... (i.e. \(2(1), 2(2), 2(3), 2(4), ... \)) an infinite sequence, so \(x \) is discrete.

b. Now a return to 0 is possible after any number of tosses greater than 1, so possible values are 2, 3, 4, 5, ... (\(1+1,1+2, 1+3, 1+4, ... \), an infinite sequence) and \(X \) is discrete

10.

a. \(T = \) total number of pumps in use at both stations. Possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

b. \(X : -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 \)

c. \(U : 0, 1, 2, 3, 4, 5, 6 \)

d. \(Z : 0, 1, 2 \)
Section 3.2

11.

a.

\[
\begin{array}{c|ccc}
 x & 4 & 6 & 8 \\
 \hline
 P(x) & .45 & .40 & .15 \\
\end{array}
\]

b.

\[0.0\quad 0.1\quad 0.2\quad 0.3\quad 0.4\quad 0.5\]

\[0.0\quad 4\quad 6\quad 8\]

\[0.0\quad 10\quad 20\quad 30\quad 40\quad 50\]

\[0.0\quad 4\quad 6\quad 7\quad 8\]

\[\text{Relative Frequency}\]

\[\text{x}\]

\[\text{P(x = 6) = .40 + .15 = .55}\]

\[\text{P(x > 6) = .15}\]

c.

\[\text{P(x = 6) = .40 + .15 = .55}\]

\[\text{P(x > 6) = .15}\]

12.

a. In order for the flight to accommodate all the ticketed passengers who show up, no more than 50 can show up. We need \(y = 50 \).

\[\text{P(y = 50) = .05 + .10 + .12 + .14 + .25 + .17 = .83}\]

b. Using the information in a. above, \(P(y > 50) = 1 - P(y = 50) = 1 - .83 = .17 \)

c. For you to get on the flight, at most 49 of the ticketed passengers must show up. \(P(y = 49) = .05 + .10 + .12 + .14 + .25 = .66 \). For the 3\(^{rd}\) person on the standby list, at most 47 of the ticketed passengers must show up. \(P(y = 44) = .05 + .10 + .12 = .27 \)
13.

a. \[P(X \leq 3) = p(0) + p(1) + p(2) + p(3) = .10 + .15 + .20 + .25 = .70 \]

b. \[P(X < 3) = P(X \leq 2) = p(0) + p(1) + p(2) = .45 \]

c. \[P(3 \leq X) = p(3) + p(4) + p(5) + p(6) = .55 \]

d. \[P(2 \leq X \leq 5) = p(2) + p(3) + p(4) + p(5) = .71 \]

e. The number of lines not in use is 6 – X, so 6 – X = 2 is equivalent to X = 4, 6 – X = 3 to X = 3, and 6 – X = 4 to X = 2. Thus we desire \[P(2 \leq X \leq 4) = p(2) + p(3) + p(4) = .65 \]

f. 6 – X \geq 4 if 6 – 4 \geq X, i.e. 2 \geq X, or X \leq 2, and \[P(X \leq 2) = .10 + .15 + .20 = .45 \]

14.

a. \[\sum_{y=1}^{5} p(y) = K[1 + 2 + 3 + 4 + 5] = 15K = 1 \implies K = \frac{1}{15} \]

b. \[P(Y \leq 3) = p(1) + p(2) + p(3) = \frac{6}{15} = .4 \]

c. \[P(2 \leq Y \leq 4) = p(2) + p(3) + p(4) = \frac{9}{15} = .6 \]

d. \[\sum_{y=1}^{5} \left(\frac{y^2}{50} \right) = \frac{1}{50} [1 + 4 + 9 + 16 + 25] = \frac{55}{50} \neq 1; \text{No} \]

15.

a. (1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

b. \[P(X = 0) = p(0) = P\{ (3,4) (3,5) (4,5)\} = \frac{1}{10} = .3 \]
\[P(X = 2) = p(2) = P\{ (1,2) \} = \frac{1}{10} = .1 \]
\[P(X = 1) = p(1) = 1 - [p(0) + p(2)] = .60, \text{and p(x) = 0 if x \neq 0, 1, 2} \]

c. \[F(0) = P(X \leq 0) = P(X = 0) = .30 \]
\[F(1) = P(X \leq 1) = P(X = 0 \text{ or } 1) = .90 \]
\[F(2) = P(X \leq 2) = 1 \]

The c.d.f. is

\[
F(x) = \begin{cases}
0 & x < 0 \\
.30 & 0 \leq x < 1 \\
.90 & 1 \leq x < 2 \\
1 & 2 \leq x
\end{cases}
\]
Chapter 3: Discrete Random Variables and Probability Distributions

16.

a.

<table>
<thead>
<tr>
<th>x</th>
<th>Outcomes</th>
<th>$p(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FFFF</td>
<td>$(.7)^4$ = .2401</td>
</tr>
<tr>
<td>1</td>
<td>FFFS, FFSF, FSFF, SFFF</td>
<td>$4[(.7)(.3)]^3$ = .4116</td>
</tr>
<tr>
<td>2</td>
<td>FFSS, FSFS, SFFS, FSFF, SFSS, SSFF</td>
<td>$6[(.7)(.3)^2] = .2646$</td>
</tr>
<tr>
<td>3</td>
<td>FSSS, SFSS, SSFS, SSSF</td>
<td>$4[(.7)(.3)]^2 = .0756$</td>
</tr>
<tr>
<td>4</td>
<td>SSSS</td>
<td>$(.3)^4 = .0081$</td>
</tr>
</tbody>
</table>

b.

![Histogram graph](image)

c. $p(x)$ is largest for $X = 1$

d. $P(X \geq 2) = p(2) + p(3) + p(4) = .2646 + .0756 + .0081 = .3483$

This could also be done using the complement.

17.

a.

$P(2) = P(Y = 2) = P(1^{\text{st}} 2 \text{ batteries are acceptable})$

$= P(\text{AA}) = (.9)(.9) = .81$

b.

$p(3) = P(Y = 3) = P(\text{UAA or AUA}) = (.1)(.9)^2 + (.1)(.9)^2 = 2[(.1)(.9)^2] = .162$

c. The fifth battery must be an A, and one of the first four must also be an A. Thus, $p(5) = P(\text{AUUUA or UAUUA or UUUAU or UUUAA}) = 4[(.1)(.9)^4] = .00324$

d. $P(Y = y) = p(y) = P(\text{the } y^{\text{th}} \text{ is an A and so is exactly one of the first } y - 1)$

$= (y - 1)(.1)^{y-2}(.9)^2, \ y = 2, 3, 4, 5, ...$
Chapter 3: Discrete Random Variables and Probability Distributions

18. a. \(p(1) = P(M = 1) = P[(1,1)] = \frac{1}{36} \)
 \[p(2) = P(M = 2) = P[(1,2) or (2,1) or (2,2)] = \frac{3}{36} \]
 \[p(3) = P(M = 3) = P[(1,3) or (2,3) or (3,1) or (3,2) or (3,3)] = \frac{5}{36} \]
 Similarly, \(p(4) = \frac{7}{36}, p(5) = \frac{9}{36}, \) and \(p(6) = \frac{11}{36} \)

b. \(F(m) = \)
 \[
 \begin{cases}
 0 & m < 1, \\
 \frac{1}{36} & 1 \leq m < 2, \\
 \frac{2}{36} & 2 \leq m < 3, \\
 \frac{3}{36} & 3 \leq m < 4, \\
 \frac{4}{36} & 4 \leq m < 5, \\
 \frac{5}{36} & 5 \leq m < 6, \\
 1 & m \geq 6
 \end{cases}
 \]

19. Let \(A \) denote the type O+ individual (type O positive blood) and B, C, D, the other 3 individuals. Then
 \[p(1) = P(Y = 1) = P(A \text{ first}) = \frac{1}{4} = .25 \]
 \[p(2) = P(Y = 2) = P(B, C, \text{ or D first and A next}) = \frac{3}{4} \cdot \frac{1}{3} = \frac{1}{4} = .25 \]
 \[p(4) = P(Y = 3) = P(A \text{ last}) = \frac{3}{4} \cdot \frac{2}{3} \cdot \frac{1}{2} = \frac{1}{4} = .25 \]
 So \(p(3) = 1 - (.25 + .25 + .25) = .25 \)

20. \(P(0) = P(Y = 0) = P(\text{both arrive on Wed.}) = (.3)(.3) = .09 \)
 \[P(1) = P(Y = 1) = P[(W, Th) or (Th, W) or (Th, Th)] \]
 \[= (.3)(.4) + (.4)(.3) + (.4)(.4) = .40 \]
 \[P(2) = P(Y = 2) = P[(W, F) or (Th, F) or (F, F) or (F, Th) or (Th, Th)] = .32 \]
 \[P(3) = 1 - [.09 + .40 + .32] = .19 \]
21. The jumps in \(F(x) \) occur at \(x = 0, 1, 2, 3, 4, 5, \) and 6, so we first calculate \(F() \) at each of these values:

\[
F(0) = P(X \leq 0) = P(X = 0) = .10 \\
F(1) = P(X \leq 1) = p(0) + p(1) = .25 \\
F(2) = P(X \leq 2) = p(0) + p(1) + p(2) = .45 \\
F(3) = .70, F(4) = .90, F(5) = .96, \text{ and } F(6) = 1.
\]

The c.d.f. is:

\[
F(x) = \begin{cases}
0.00 & x < 0 \\
0.10 & 0 \leq x < 1 \\
0.25 & 1 \leq x < 2 \\
0.45 & 2 \leq x < 3 \\
0.70 & 3 \leq x < 4 \\
0.90 & 4 \leq x < 5 \\
0.96 & 5 \leq x < 6 \\
1.00 & 6 \leq x
\end{cases}
\]

Then \(P(X \leq 3) = F(3) = .70, P(X < 3) = P(X \leq 2) = F(2) = .45, \)

\(P(3 \leq X) = 1 - P(X \leq 2) = 1 - F(2) = 1 - .45 = .55, \)

and \(P(2 \leq X \leq 5) = F(5) - F(1) = .96 - .25 = .71 \)

22.

a. \(P(X = 2) = .39 - .19 = .20 \)
b. \(P(X > 3) = 1 - .67 = .33 \)
c. \(P(2 \leq X \leq 5) = .92 - .19 = .73 \)
d. \(P(2 < X < 5) = .92 - .39 = .53 \)

23.

a. Possible \(X \) values are those values at which \(F(x) \) jumps, and the probability of any particular value is the size of the jump at that value. Thus we have:

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(x))</td>
<td>.30</td>
<td>.10</td>
<td>.05</td>
<td>.15</td>
<td>.40</td>
</tr>
</tbody>
</table>

b. \(P(3 \leq X \leq 6) = F(6) - F(3-) = .60 - .30 = .30 \)

\(P(4 \leq X) = 1 - P(X < 4) = 1 - F(4-) = 1 - .40 = .60 \)

24. \(P(0) = P(Y = 0) = P(B \text{ first}) = p \)

\(P(1) = P(Y = 1) = P(G \text{ first, then } B) = P(GB) = (1 - p)p \)

\(P(2) = P(Y = 2) = P(GGB) = (1 - p)^2p \)

Continuing, \(p(y) = P(Y=y) = P(y G's \text{ and then a } B) = (1 - p)^y p \text{ for } y = 0, 1, 2, 3, \ldots \)
Chapter 3: Discrete Random Variables and Probability Distributions

25.
 a. Possible X values are 1, 2, 3, …

 \[P(1) = P(X = 1) = P(\text{return home after just one visit}) = \frac{1}{3} \]

 \[P(2) = P(X = 2) = P(\text{second visit and then return home}) = \frac{2}{3} \cdot \frac{1}{3} \]

 \[P(3) = P(X = 3) = P(\text{three visits and then return home}) = \left(\frac{2}{3} \right)^2 \cdot \frac{1}{3} \]

 In general \(p(x) = \left(\frac{2}{3} \right)^{x-1} \left(\frac{1}{3} \right) \) for \(x = 1, 2, 3, \ldots \)

 b. The number of straight line segments is \(Y = 1 + X \) (since the last segment traversed returns Alvie to O), so as in a, \(p(y) = \left(\frac{2}{3} \right)^{y-2} \left(\frac{1}{3} \right) \) for \(y = 2, 3, \ldots \)

 c. Possible Z values are 0, 1, 2, 3, …

 \[p(0) = P(\text{male first and then home}) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \]

 \[p(1) = P(\text{exactly one visit to a female}) = P(\text{female 1st, then home}) + P(\text{F, M, home}) + P(\text{M, F, home}) + P(\text{M, F, M, home}) \]

 \[= \left(\frac{1}{2} \right) \left(\frac{1}{3} \right) + \left(\frac{1}{2} \right) \left(\frac{2}{3} \right) \left(\frac{1}{3} \right) + \left(\frac{1}{2} \right) \left(\frac{2}{3} \right) \left(\frac{1}{3} \right) + \left(\frac{1}{2} \right) \left(\frac{1}{3} \right) \left(\frac{2}{3} \right) \left(\frac{1}{3} \right) \]

 where the first term corresponds to initially visiting a female and the second term corresponds to initially visiting a male. Similarly,

 \[p(2) = \left(\frac{1}{2} \right) \left(\frac{2}{3} \right) \left(\frac{1}{3} \right) + \left(\frac{1}{2} \right) \left(\frac{1}{3} \right) \left(\frac{2}{3} \right) \left(\frac{1}{3} \right) \]

 In general, \(p(z) = \left(\frac{1}{2} \right) \left(\frac{2}{3} \right)^{z-2} \left(\frac{1}{3} \right) + \left(\frac{1}{2} \right) \left(\frac{1}{3} \right)^z \left(\frac{1}{3} \right) \) for \(z = 1, 2, 3, \ldots \)

26.
 a. The sample space consists of all possible permutations of the four numbers 1, 2, 3, 4:

 | outcome | y value | outcome | y value | outcome | y value |
 |---------|--------|---------|--------|---------|--------|
 | 1234 | 4 | 2314 | 1 | 3412 | 0 |
 | 1243 | 2 | 2341 | 0 | 3421 | 0 |
 | 1324 | 2 | 2413 | 0 | 4132 | 1 |
 | 1342 | 1 | 2431 | 1 | 4123 | 0 |
 | 1423 | 1 | 3124 | 1 | 4213 | 1 |
 | 1432 | 2 | 3142 | 0 | 4231 | 2 |
 | 2134 | 2 | 3214 | 2 | 4312 | 0 |
 | 2143 | 0 | 3241 | 1 | 4321 | 0 |

 b. Thus \(P(0) = P(Y = 0) = \frac{9}{24} \), \(P(1) = P(Y = 1) = \frac{8}{24} \), \(P(2) = P(Y = 2) = \frac{6}{24} \), \(P(3) = P(Y = 3) = 0 \), \(P(3) = P(Y = 3) = \frac{1}{24} \).
Chapter 3: Discrete Random Variables and Probability Distributions

27. If \(x_1 < x_2 \), \(F(x_2) = P(X \leq x_2) = P(\{X \leq x_1\} \cup \{x_1 < X \leq x_2\}) = P(X \leq x_1) + P(x_1 < X \leq x_2) \geq P(X \leq x_1) = F(x_1). \)

\[F(x_1) = F(x_2) \text{ when } P(x_1 < X \leq x_2) = 0. \]

Section 3.3

28.

a. \(E(X) = \sum_{x=0}^{4} x \cdot p(x) = (0)(.08) + (1)(.15) + (2)(.45) + (3)(.27) + (4)(.05) = 2.06 \)

b. \(V(X) = \sum_{x=0}^{4} (x - 2.06)^2 \cdot p(x) = (0 - 2.06)^2(.08) + \ldots + (4 - 2.06)^2(.05) \)

\[= .339488+.168540+.001620+.238572+.188180 = .9364 \]

c. \(\sigma_x = \sqrt{.9364} = .9677 \)

d. \(V(X) = \left[\sum_{x=0}^{4} x^2 \cdot p(x) \right] - (2.06)^2 = 5.1800 - 4.2436 = .9364 \)

29.

a. \(E(Y) = \sum_{x=0}^{4} y \cdot p(y) = (0)(.60) + (1)(.25) + (2)(.10) + (3)(.05) = .60 \)

b. \(E(100Y^2) = \sum_{x=0}^{4} 100y^2 \cdot p(y) = (0)(.60) + (100)(.25) + (400)(.10) + (900)(.05) = 110 \)

30. \(E(Y) = .60; \)

\(E(Y^2) = 1.1 \)

\(V(Y) = E(Y^2) - [E(Y)]^2 = 1.1 - (.60)^2 = .74 \)

\(\sigma_y = \sqrt{.74} = .8602 \)

\(E(Y) \pm \sigma = .60 \pm .8602 = (-.2602, 1.4602) \) or (0, 1).

\(P(Y = 0) + P(Y = 1) = .85 \)
31.
 a. \(E(X) = (13.5)(.2) + (15.9)(.5) + (19.1)(.3) = 16.38 \),
 \(E(X^2) = (13.5)^2(.2) + (15.9)^2(.5) + (19.1)^2(.3) = 272.298 \),
 \(V(X) = 272.298 - (16.38)^2 = 3.9936 \)
 b. \(E(25X - 8.5) = 25 E(X) - 8.5 = (25)(16.38) - 8.5 = 401 \)
 c. \(V(25X - 8.5) = V(25X) = (25)^2 V(X) = (625)(3.9936) = 2496 \)
 d. \(E[h(X)] = E[X - .01X^2] = E(X) - .01E(X^2) = 16.38 - 2.72 = 13.66 \)

32.
 a. \(E(X^2) = \sum_{x=0}^{\infty} x^2 p(x) = (0^2)(1-p) + (1^2)p = (1)p = p \)
 b. \(V(X) = E(X^2) - [E(X)]^2 = p - p^2 = p(1-p) \)
 c. \(E(X^3) = (0^3)(1-p) + (1^3)p = p \)

33.
 \(E(X) = \sum_{x=1}^{\infty} x \cdot p(x) = \sum_{x=1}^{\infty} x \cdot \frac{c}{x^3} = c \sum_{x=1}^{\infty} \frac{1}{x^2} \), but it is a well-known result from the theory of infinite series that \(\sum_{x=1}^{\infty} \frac{1}{x^2} < \infty \), so \(E(X) \) is finite.

34.
 Let \(h(X) \) denote the net revenue (sales revenue – order cost) as a function of \(X \). Then \(h_3(X) \) and \(h_4(X) \) are the net revenue for 3 and 4 copies purchased, respectively. For \(x = 1 \) or 2, \(h_3(X) = 2x - 3 \), but at \(x = 3,4,5,6 \) the revenue plateaus. Following similar reasoning, \(h_4(X) = 2x - 4 \) for \(x=1,2,3 \), but plateaus at 4 for \(x = 4,5,6 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_3(x))</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(h_4(x))</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(p(x))</td>
<td>(\frac{1}{15})</td>
<td>(\frac{7}{15})</td>
<td>(\frac{1}{15})</td>
<td>(\frac{3}{15})</td>
<td>(\frac{4}{15})</td>
<td>(\frac{3}{15})</td>
</tr>
</tbody>
</table>

\[E[h_3(X)] = \sum_{x=1}^{6} h_3(x) \cdot p(x) = (-1)(\frac{1}{15}) + \ldots + (3)(\frac{3}{15}) = 2.4667 \]

Similarly, \(E[h_4(X)] = \sum_{x=1}^{6} h_4(x) \cdot p(x) = (-2)(\frac{1}{15}) + \ldots + (4)(\frac{2}{15}) = 2.6667 \)

Ordering 4 copies gives slightly higher revenue, on the average.
35.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(P(x))</th>
<th>.8</th>
<th>.1</th>
<th>.08</th>
<th>.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0</td>
<td>1,000</td>
<td>5,000</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>(H(x))</td>
<td>0</td>
<td>500</td>
<td>4,500</td>
<td>9,500</td>
<td></td>
</tr>
</tbody>
</table>

\[E[h(X)] = 600. \text{ Premium should be$100 plus expected value of damage minus deductible or$700.} \]

36. \[
E(X) = \sum_{x=1}^{n} x \cdot \left(\frac{1}{n} \right) = \left(\frac{1}{n} \right) \sum_{x=1}^{n} x = \frac{1}{n} \left[\frac{n(n+1)}{2} \right] = \frac{n+1}{2}
\]

\[
E(X^2) = \sum_{x=1}^{n} x^2 \cdot \left(\frac{1}{n} \right) = \left(\frac{1}{n} \right) \sum_{x=1}^{n} x^2 = \frac{1}{n} \left[\frac{n(n+1)(2n+1)}{6} \right] = \frac{(n+1)(2n+1)}{6}
\]

\[
So \ V(X) = \frac{(n+1)(2n+1)}{6} - \left(\frac{n+1}{2} \right)^2 = \frac{n^2 - 1}{12}
\]

37. \[
E[h(X)] = E\left(\frac{1}{X} \right) = \sum_{x=1}^{6} \frac{1}{x} \cdot p(x) = \frac{1}{6} \sum_{x=1}^{6} \frac{1}{x} = .408, \text{ whereas } \frac{1}{3.5} = .286, \text{ so you expect to win more if you gamble.}
\]

38. \[
E(X) = \sum_{x=1}^{4} x \cdot p(x) = 2.3, \text{ E}(X^2) = 6.1, \text{ so } V(X) = 6.1 - (2.3)^2 = .81
\]

Each lot weighs 5 lbs, so weight left = 100 – 5x.
Thus the expected weight left is 100 – 5E(X) = 88.5,
and the variance of the weight left is
\[V(100 - 5X) = V(-5X) = 25V(X) = 20.25. \]

39.

a. The line graph of the p.m.f. of \(-X\) is just the line graph of the p.m.f. of \(X\) reflected about zero, but both have the same degree of spread about their respective means, suggesting \(V(-X) = V(X)\).

b. With \(a = -1, b = 0\), \(V(aX + b) = V(-X) = a^2V(X)\).

40. \[
V(aX + b) = \sum_{x} [aX + b - E(aX + b)]^2 \cdot p(x) = \sum_{x} [aX + b - (a\mu + b)]^2 \cdot p(x)
\]

\[
= \sum_{x} [aX - (a\mu)]^2 \cdot p(x) = a^2 \sum_{x} [X - \mu]^2 \cdot p(x) = a^2V(X).
\]
41.
 a. \(E[X(X-1)] = E(X^2) - E(X) \) \Rightarrow E(X^2) = E[X(X-1)] + E(X) = 32.5

 b. \(V(X) = E(X^2) - (E(X))^2 = 32.5 - (5)^2 = 7.5 \)

 c. \(V(X) = E[X(X-1)] + E(X) - [E(X)]^2 \)

42.
 With \(a = 1 \) and \(b = c \), \(E(X - c) = E(aX + b) = aE(X) + b = E(X) - c \). When \(c = \mu \), \(E(X - \mu) = E(X) - \mu = \mu - \mu = 0 \), so the expected deviation from the mean is zero.

43.
 a.

 \[
 \begin{array}{c|cccccc}
 k & 2 & 3 & 4 & 5 & 10 \\
 \hline
 \frac{1}{k^2} & .25 & .11 & .06 & .04 & .01 \\
 \end{array}
 \]

 b. \(\mu = \sum_{x=0}^{6} x \cdot p(x) = 2.64 \), \(\sigma^2 = \left[\sum_{x=0}^{6} x^2 \cdot p(x) \right] - \mu^2 = 2.37, \sigma = 1.54 \)

 Thus \(\mu - 2\sigma = -.44 \), and \(\mu + 2\sigma = 5.72 \),
 so \(P(|X-\mu| \geq 2\sigma) = P(X \text{ is at least 2 s.d.'s from } \mu) = P(X = 6) = .04 \).

 Chebyshev’s bound of .025 is much too conservative. For \(K = 3,4,5, \) and \(10 \), \(P(|X-\mu| \geq k\sigma) = 0 \), here again pointing to the very conservative nature of the bound \(\frac{1}{k^2} \).

 c. \(\mu = 0 \) and \(\sigma = \frac{1}{3} \), so \(P(|X-\mu| \geq 3\sigma) = P(|X| \geq 1) = P(X = -1 \text{ or } +1) = \frac{1}{18} + \frac{1}{18} = \frac{1}{9} \), identical to the upper bound.

 d. Let \(p(-1) = \frac{1}{30} \), \(p(1) = \frac{1}{30} \), \(p(0) = \frac{24}{25} \).
Section 3.4

44.
 a. \(b(3;8,.6) = \binom{8}{3} (.6)^3 (.4)^5 = (56)(.00221184) = .124 \)

 b. \(b(5;8,.6) = \binom{8}{5} (.6)^5 (.4)^3 = (56)(.00497664) = .279 \)

 c. \(P(3 \leq X \leq 5) = b(3;8,.6) + b(4;8,.6) + b(5;8,.6) = .635 \)

 d. \(P(1 \leq X) = 1 - P(X = 0) = 1 - \binom{12}{0} (.1)^0 (.9)^{12} = 1 - (.9)^{12} = .718 \)

45.
 a. \(B(4;10,.3) = .850 \)

 b. \(b(4;10,.3) = B(4;10,.3) - B(3;10,.3) = .200 \)

 c. \(b(6;10,.7) = B(6;10,.7) - B(5;10,.7) = .200 \)

 d. \(P(2 \leq X \leq 4) = B(4;10,.3) - B(1;10,.3) = .701 \)

 e. \(P(2 < X) = 1 - P(X \leq 1) = 1 - B(1;10,.3) = .851 \)

 f. \(P(X \leq 1) = B(1;10,.7) = .0000 \)

 g. \(P(2 < X < 6) = P(3 \leq X \leq 5) = B(5;10,.3) - B(2;10,.3) = .570 \)

46. \(X \sim \text{Bin}(25, .05) \)
 a. \(P(X \leq 2) = B(2;25,.05) = .873 \)

 b. \(P(X \geq 5) = 1 - P(X \leq 4) = 1 - B(4;25,.05) = .1 - .993 = .007 \)

 c. \(P(1 \leq X \leq 4) = P(X \leq 4) - P(X \leq 0) = .993 - .277 = .716 \)

 d. \(P(X = 0) = P(X \leq 0) = .277 \)

 e. \(E(X) = np = (25)(.05) = 1.25 \)

 \(V(X) = np(1 - p) = (25)(.05)(.95) = 1.1875 \)

 \(\sigma_x = 1.0897 \)
47. $X \sim \text{Bin}(6, .10)$

a. $P(X = 1) = \binom{n}{x} p^x (1 - p)^{n-x} = \binom{6}{1} (.1)^1 (.9)^5 = .3543$

b. $P(X \geq 2) = 1 - [P(X = 0) + P(X = 1)]$.

From a, we know $P(X = 1) = .3543$, and $P(X = 0) = \binom{6}{0} (.1)^0 (.9)^6 = .5314$.

Hence $P(X \geq 2) = 1 - (.3543 + .5314) = .1143$

c. Either 4 or 5 goblets must be selected

i) Select 4 goblets with zero defects: $P(X = 0) = \binom{4}{0} (.1)^0 (.9)^4 = .6561$.

ii) Select 4 goblets, one of which has a defect, and the 5th is good:

\[\binom{4}{1} (.1)^1 (.9)^3 \times .9 = .26244 \]

So the desired probability is $.6561 + .26244 = .91854$

48. Let $S = \text{comes to a complete stop}$, so $p = .25$, $n = 20$

a. $P(X \leq 6) = B(6;20,.25) = .786$

b. $P(X = 6) = b(6;20,.20) = B(6;20,.25) - B(5;20,.25) = .786 - .617 = .169$

c. $P(X \geq 6) = 1 - P(X \leq 5) = 1 - B(5;20,.25) = 1 - .617 = .383$

d. $E(X) = (20)(.25) = 5$. We expect 5 of the next 20 to stop.

49. Let $S = \text{has at least one citation}$. Then $p = .4$, $n = 15$

a. If at least 10 have no citations (Failure), then at most 5 have had at least one (Success):

\[P(X \leq 5) = B(5;15,.40) = .403 \]

b. $P(X \leq 7) = B(7;15,.40) = .787$

c. $P(5 \leq X \leq 10) = P(X \leq 10) - P(X \leq 4) = .991 - .217 = .774$
50. \(\text{X} \sim \text{Bin}(10, .60)\)
 a. \(P(\text{X} \geq 6) = 1 - P(\text{X} \leq 5) = 1 - \text{B}(5;20,.60) = 1 - .367 = .633\)
 b. \(E(\text{X}) = np = (10)(.6) = 6\); \(V(\text{X}) = np(1 - p) = (10)(.6)(.4) = 2.4\);
 \(\sigma_x = 1.55\)
 \(E(\text{X}) \pm \sigma_x = (4.45, 7.55)\).
 We desire \(P(5 \leq \text{X} \leq 7) = P(\text{X} \leq 7) - P(\text{X} \leq 4) = .833 - .166 = .667\)
 c. \(P(3 \leq \text{X} \leq 7) = P(\text{X} \leq 7) - P(\text{X} \leq 2) = .833 - .012 = .821\)

51. Let \(S\) represent a telephone that is submitted for service while under warranty and must be
 replaced. Then \(p = P(\text{S}) = P(\text{replaced} | \text{submitted})P(\text{submitted}) = (.40)(.20) = .08.\) Thus \(\text{X}\),
 the number among the company’s 10 phones that must be replaced, has a binomial distribution with \(n = 10, p = .08\),
 so \(p(2) = P(\text{X} = 2) = \binom{10}{2}(.08)^2 (.92)^8 = .1478\)

52. \(\text{X} \sim \text{Bin}(25, .02)\)
 a. \(P(\text{X} = 1) = 25(.02)^2 (.98)^{24} = .308\)
 b. \(P(\text{X} = 1) = 1 - P(\text{X} = 0) = 1 - (.98)^{25} = 1 - .603 = .397\)
 c. \(P(\text{X} = 2) = 1 - P(\text{X} = 1) = 1 - [.308 + .397]\)
 d. \(\bar{x} = 25(.02) = .5; \ \sigma = \sqrt{npq} = \sqrt{25(.02)(.98)} = \sqrt{.49} = .7\)
 \(\bar{x} + 2\sigma = .5 + 1.4 = 1.9\) So \(P(0 = \text{X} = 1.9 = P(\text{X} = 1) = .705\)
 e. \(\frac{.5(4.5) + 24.5(3)}{25} = 3.03 \text{ hours}\)

53. \(X = \) the number of flashlights that work.

 Let event \(B = \{\) battery has acceptable voltage\}\).
 Then \(P(\text{flashlight works}) = P(\text{both batteries work}) = P(B)P(B) = (.9)(.9) = .81\) We must
 assume that the batteries’ voltage levels are independent.
 \(X \sim \text{Bin}(10, .81). \ P(\text{X} = 9) = P(\text{X} = 9) + P(\text{X} = 10)\)
 \(\left(\binom{10}{9}(.81)^9(.19) + \binom{10}{10}(.81)^{10}\right) = .285 + .122 = .407\)
Let p denote the actual proportion of defectives in the batch, and X denote the number of defectives in the sample.

a. P(the batch is accepted) = $P(X \leq 2) = B(2;10,p)$

<table>
<thead>
<tr>
<th>p</th>
<th>.01</th>
<th>.05</th>
<th>.10</th>
<th>.20</th>
<th>.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\text{accept})$</td>
<td>1.00</td>
<td>.988</td>
<td>.930</td>
<td>.678</td>
<td>.526</td>
</tr>
</tbody>
</table>

b.

c. P(the batch is accepted) = $P(X \leq 1) = B(1;10,p)$

<table>
<thead>
<tr>
<th>p</th>
<th>.01</th>
<th>.05</th>
<th>.10</th>
<th>.20</th>
<th>.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\text{accept})$</td>
<td>.996</td>
<td>.914</td>
<td>.736</td>
<td>.376</td>
<td>.244</td>
</tr>
</tbody>
</table>

d. P(the batch is accepted) = $P(X \leq 2) = B(2;15,p)$

<table>
<thead>
<tr>
<th>p</th>
<th>.01</th>
<th>.05</th>
<th>.10</th>
<th>.20</th>
<th>.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(\text{accept})$</td>
<td>1.00</td>
<td>.964</td>
<td>.816</td>
<td>.398</td>
<td>.236</td>
</tr>
</tbody>
</table>

e. We want a plan for which $P(\text{accept})$ is high for $p \leq .1$ and low for $p > .1$.

The plan in **d** seems most satisfactory in these respects.
55.
 a. \(P(\text{rejecting claim when } p = .8) = B(15; 25, .8) = .017 \)

 b. \(P(\text{not rejecting claim when } p = .7) = P(X \geq 16 \text{ when } p = .7) = 1 - B(15; 25, .7) = 1 - .189 = .811 \); for \(p = .6 \), this probability is \(1 - B(15; 25, .6) = 1 - .575 = .425 \).

 c. The probability of rejecting the claim when \(p = .8 \) becomes \(B(14; 25, .8) = .006 \), smaller than in \(a \) above. However, the probabilities of \(b \) above increase to .902 and .586, respectively.

56. \(h(x) = 1 \cdot X + 2.25(25 - X) = 62.5 - 1.5X \), so \(E(h(X)) = 62.5 - 1.5E(x) = 62.5 - 1.5np - 62.5 - (1.5)(25)(.6) = \$40.00 \)

57. If topic A is chosen, when \(n = 2 \), \(P(\text{at least half received}) = P(X \geq 1) = 1 - P(X = 0) = 1 - (.1)^2 = .99 \)

 If B is chosen, when \(n = 4 \), \(P(\text{at least half received}) = P(X \geq 2) = 1 - P(X \leq 1) = 1 - (0.1)^4 - 4(.1)^3(.9) = .9963 \)

 Thus topic B should be chosen.

 If \(p = .5 \), the probabilities are .75 for A and .6875 for B, so now A should be chosen.

58.
 a. \(np(1 - p) = 0 \) if either \(p = 0 \) (whence every trial is a failure, so there is no variability in \(X \)) or if \(p = 1 \) (whence every trial is a success and again there is no variability in \(X \))

 b. \(\frac{d}{dp}[np(1 - p)] = n[1 - 2p = 0 \quad \Rightarrow \quad p = .5 \), which is easily seen to correspond to a maximum value of \(V(X) \).

59.
 a. \(b(x; n, 1 - p) = \binom{n}{x}(1 - p)^x(p)^{n-x} = \binom{n}{n-x}(p)^x(1 - p)^{n-x} = b(n-x; n, p) \)

 Alternatively, \(P(\text{x S’s when } P(S) = 1 - p) = P(\text{n-x F’s when } P(F) = p), \) since the two events are identical), but the labels S and F are arbitrary so can be interchanged (if \(P(S) \) and \(P(F) \) are also interchanged), yielding \(P(\text{n-x S’s when } P(S) = 1 - p) \) as desired.

 b. \(B(x;n,1 - p) = P(\text{at most x S’s when } P(S) = 1 - p) = P(\text{at least n-x F’s when } P(F) = p) = P(\text{at least n-x S’s when } P(S) = p) = 1 - P(\text{at most n-x-1 S’s when } P(S) = p) = 1 - B(n-x-1;n, p) \)

 c. Whenever \(p > .5 \), \((1 - p) < .5 \) so probabilities involving \(X \) can be calculated using the results \(a \) and \(b \) in combination with tables giving probabilities only for \(p \leq .5 \)
Chapter 3: Discrete Random Variables and Probability Distributions

60. Proof of E(X) = np:

\[E(X) = \sum_{x=0}^{n} x \cdot \binom{n}{x} p^x (1-p)^{n-x} = \sum_{x=1}^{n} x \cdot \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \]

\[= \sum_{x=1}^{n} \frac{n!}{(x-1)!(n-x)!} p^x (1-p)^{n-x} = np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x} \]

\[= np \left\{ \sum_{y=0}^{n-1} \frac{n-1}{y} p^y (1-p)^{n-1-y} \right\} \]

The expression in braces is the sum over all possible values \(y = 0, 1, 2, \ldots, n-1 \) of a binomial p.m.f. based on \(n-1 \) trials, so equals 1, leaving only np, as desired.

61. a. Although there are three payment methods, we are only concerned with \(S = \) uses a debit card and \(F = \) does not use a debit card. Thus we can use the binomial distribution. So \(n = 100 \) and \(p = .5 \). E(X) = np = 100(.5) = 50, and V(X) = 25.

b. With \(S = \) doesn’t pay with cash, \(n = 100 \) and \(p = .7 \), E(X) = np = 100(.7) = 70, and V(X) = 21.

62. a. Let \(X = \) the number with reservations who show, a binomial r.v. with \(n = 6 \) and \(p = .8 \). The desired probability is

\[P(X = 5 \text{ or } 6) = \binom{6}{5}(.8)^5(.2) + \binom{6}{6}(.8)^6 = .3932 + .2621 = .6553 \]

b. Let \(h(X) = \) the number of available spaces. Then

\[\begin{array}{c|c|c|c|c|c|c|}
\text{When x is:} & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\text{H(x) is:} & 4 & 3 & 2 & 1 & 0 & 0 & 0 \\
\end{array} \]

\[E[h(X)] = \sum_{x=0}^{6} h(x) \cdot b(x;6,.8) = 4(.000) + 3(.002) = .0172 \]

\[P(X = 0) = b(0;3,.8)(.1) + b(0;4,.8)(.2) + b(0;5,.8)(.3) + b(0;6,.8)(.4) = .0080(.1) + .0016(.2) + .0003(.3) + .0001(.4) = .0113 \]

\[P(X = 1) = b(1;3,.8)(.1) + \ldots + b(1;6,.8)(.4) = .0172 \]

\[P(X = 2) = .0906, \quad P(X = 3) = .2273, \]

\[P(X = 4) = 1 - [.0113 + \ldots + .2273] = .6636 \]
63. When \(p = .5 \), \(\mu = 10 \) and \(\sigma = 2.236 \), so \(2\sigma = 4.472 \) and \(3\sigma = 6.708 \).

The inequality \(|X - 10| \geq 4.472\) is satisfied if either \(X \leq 5 \) or \(X \geq 15 \), or \(P(|X - \mu| \geq 2\sigma) = P(X \leq 5 \text{ or } X \geq 15) = .021 + .021 = .042 \).

In the case \(p = .75 \), \(\mu = 15 \) and \(\sigma = 1.937 \), so \(2\sigma = 3.874 \) and \(3\sigma = 5.811 \). \(P(|X - 15| \geq 3.874) = P(X \leq 11 \text{ or } X \geq 19) = .041 + .024 = .065 \), whereas \(P(|X - 15| \geq 5.811) = P(X \leq 9) = .004 \). All these probabilities are considerably less than the upper bounds .25 (for \(k = 2 \)) and .11 (for \(k = 3 \)) given by Chebyshev.

Section 3.5

64.

a. \(X \sim \text{Hypergeometric } N=15, n=5, M=6 \)

b. \(P(X=2) = \binom{6}{2} \frac{9}{15} \binom{9}{3} \frac{15}{5} = \frac{840}{3003} = .280 \)

\[P(X=2) = P(X=0) + P(X=1) + P(X=2) \]

\[= \binom{9}{5} \frac{6}{15} \binom{15}{4} \frac{9}{15} + \frac{840}{3003} = 126 + 756 + 840 = \frac{1722}{3003} = .573 \]

\[P(X=2) = 1 - P(X=1) = 1 - [P(X=0) + P(X=1)] = 1 - \frac{126 + 756}{3003} = .706 \]

c. \(E(X) = \sum \frac{6}{15} = 2 \); \(V(X) = \left(\frac{15 - 5}{14} \right) \cdot 5 \cdot \left(\frac{6}{15} \right) \left(1 - \frac{6}{15} \right) = .857 \)

\(\sigma = \sqrt{V(X)} = .926 \)
65. \(X \sim h(x; 6, 12, 7)\)

a. \(P(X=5) = \binom{7}{5} \binom{1}{1} \binom{12}{6} \binom{6}{5} = \frac{105}{924} = .114\)

b. \(P(X=4) = 1 - P(X=5) = 1 - [P(X=5) + P(X=6)] =\)

\[
1 - \left(\binom{7}{5} \binom{1}{1} \binom{12}{6} \binom{6}{5} + \binom{6}{1} \binom{1}{1} \binom{12}{6} \binom{6}{6} \right) = 1 - \frac{105 + 7}{924} = 1 - \frac{1.121}{924} = .879
\]

c. \(E(X) = \left(\frac{11}{12} \cdot 7 \right) = 3.5; \ \sigma = \sqrt{\left(\frac{11}{12} \right) \left(\frac{7}{12} \right) \left(\frac{5}{12} \right)} = \sqrt{.795} = .892\)

\(P(X > 3.5 + .892) = P(X > 4.392) = P(X=5) = .121\) (see part b)

d. We can approximate the hypergeometric distribution with the binomial if the population size and the number of successes are large: \(h(x;15,40,400)\) approaches \(b(x;15,.10)\). So \(P(X=5) \approx B(5; 15, .10)\) from the binomial tables = .998

66.

a. \(P(X = 10) = h(10;15,30,50) = \binom{30}{10} \binom{20}{5} = \binom{50}{15} = .2070\)

b. \(P(X \geq 10) = h(10;15,30,50) + h(11;15,30,50) + \ldots + h(15;15,30,50) = .2070 + .1176 + .0438 + .0101 + .0013 + .0001 = .3799\)

c. \(P(\text{at least 10 from the same class}) = P(\text{at least 10 from second class [answer from b]}) + P(\text{at least 10 from first class}). \text{ But "at least 10 from 1st class" is the same as "at most 5 from the second" or } P(X \leq 5).\)

\(P(X \leq 5) = h(0;15,30,50) + h(1;15,30,50) + \ldots + h(5;15,30,50) = 11697 + .002045 + .000227 + .000150 + .00001 + .000001 = .01412\)

So the desired probability = \(P(x \geq 10) + P(X \leq 5) = .3799 + .01412 = .39402\)
Chapter 3: Discrete Random Variables and Probability Distributions

d. \[E(X) = n \cdot \frac{M}{N} = 15 \cdot \frac{30}{50} = 9 \]
\[V(X) = \left(\frac{35}{49} \right) \cdot 9 \cdot \left(1 - \frac{30}{50} \right) = 2.5714 \]
\[\sigma_x = 1.6036 \]

e. Let \(Y = 15 - X \). Then \(E(Y) = 15 - E(X) = 15 - 9 = 6 \)
\[V(Y) = V(15 - X) - V(X) = 2.5714, \text{ so } \sigma_Y = 1.6036 \]

67.
a. Possible values of \(X \) are 5, 6, 7, 8, 9, 10. (In order to have less than 5 of the granite, there would have to be more than 10 of the basaltic).
\[P(X = 5) = h(5; 15, 10, 20) = \frac{\binom{10}{5} \binom{10}{10}}{\binom{20}{15}} = .0163. \]
Following the same pattern for the other values, we arrive at the pmf, in table form below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p(x))</td>
<td>.0163</td>
<td>.1354</td>
<td>.3483</td>
<td>.3483</td>
<td>.1354</td>
<td>.0163</td>
</tr>
</tbody>
</table>

b. \(P(\text{all 10 of one kind or the other}) = P(X = 5) + P(X = 10) = .0163 + .0163 = .0326 \)

c. \[E(X) = n \cdot \frac{M}{N} = 15 \cdot \frac{10}{20} = 7.5 ; V(X) = \left(\frac{5}{19} \right) \cdot 7.5 \left(1 - \frac{10}{20} \right) = .9868 ; \]
\[\sigma_x = .9934 \]
\[\mu \pm \sigma = 7.5 \pm .9934 = (6.5066, 8.4934), \text{ so we want } P(X = 7) + P(X = 8) = .3483 + .3483 = .6966 \]

68.
a. \(h(x; 6,4,11) \)

b. \(6 \cdot \left(\frac{4}{11} \right) = 2.18 \)
69.
 a. \(h(x; 10,10,20) \) (the successes here are the top 10 pairs, and a sample of 10 pairs is drawn from among the 20)

 b. Let \(X \) = the number among the top 5 who play E-W. Then \(P(\text{all of top 5 play the same direction}) = P(X = 5) + P(X = 0) = h(5;10,5,20) + h(5;10,5,20) \)

\[
= \binom{15}{5} \binom{15}{10} + \binom{20}{10} \binom{20}{10} = .033
\]

 c. \(N = 2n; M = n; n = n \)

\[h(x;n,n,2n) \]

\[E(X) = n \cdot \frac{n}{2n} = \frac{1}{2} n; \]

\[V(X) = \left(\frac{2n-n}{2n-1} \right) \cdot n \cdot \frac{n}{2n} \cdot \left(1 - \frac{n}{2n} \right) = \left(\frac{n}{2n-1} \right) \cdot \frac{n}{2} \cdot \left(1 - \frac{n}{2n} \right) \cdot \left(\frac{n}{2n-1} \right) \cdot \frac{n}{2} \cdot \frac{1}{2} \]

70.
 a. \(h(x;10,15,50) \)

 b. When \(N \) is large relative to \(n \), \(h(x;n,M,N) \approx b \left(x; n, \frac{M}{N} \right) \)

 so \(h(x;10,150,500) \approx b(x;10,.3) \)

 c. Using the hypergeometric model, \(E(X) = 10 \cdot \left(\frac{150}{500} \right) = 3 \) and

\[
V(X) = \frac{490}{499} (10)(.3)(.7) = .982(2.1) = 2.06
\]

Using the binomial model, \(E(X) = 10(.3) = 3 \), and

\[
V(X) = 10(.3)(.7) = 2.1
\]
Chapter 3: Discrete Random Variables and Probability Distributions

71.
 a. With S = a female child and F = a male child, let X = the number of F’s before the 2nd S. Then P(X = x) = nb(x;2,.5)

 b. P(exactly 4 children) = P(exactly 2 males)
 = nb(2;2,.5) = (3)(.0625) = .188

 c. P(at most 4 children) = P(X \leq 2)
 = \sum_{x=0}^{2} nb(x;2,.5) = .25 + 2(.25)(.5) + 3(.0625) = .688

 d. E(X) = \frac{(2)(.5)}{.5} = 2, so the expected number of children = E(X + 2)
 = E(X) + 2 = 4

72.
 The only possible values of X are 3, 4, and 5.
 p(3) = P(X = 3) = P(first 3 are B’s or first 3 are G’s) = 2(.5)^3 = .250
 p(4) = P(two among the 1st three are B’s and the 4th is a B) + P(two among the 1st three are G’s and the 4th is a G) = 2 \cdot \binom{3}{2}(.5)^4 = .375
 p(5) = 1 – p(3) – p(4) = .375

73.
 This is identical to an experiment in which a single family has children until exactly 6 females have been born (since p = .5 for each of the three families), so p(x) = nb(x;6,.5) and E(X) = 6
 (= 2+2+2, the sum of the expected number of males born to each one.)

74.
 The interpretation of “roll” here is a pair of tosses of a single player’s die (two tosses by A or two by B). With S = doubles on a particular roll, p = \frac{1}{6}. Furthermore, A and B are really identical (each die is fair), so we can equivalently imagine A rolling until 10 doubles appear.
 The P(x rolls) = P(9 doubles among the first x – 1 rolls and a double on the xth roll =
 \left(\frac{x-1}{9} \right) \left(\frac{5}{6} \right)^{x-10} \left(\frac{1}{6} \right)^9 \left(\frac{1}{6} \right) = \left(\frac{x-1}{9} \right) \left(\frac{5}{6} \right)^{x-10} \left(\frac{1}{6} \right)^{10}

 E(X) = \frac{r(1 – p)}{p} = \frac{10(\frac{5}{6})}{\frac{1}{6}} = 10(5) = 50
 \sigma(X) = \frac{r(1 – p)}{p^2} = \frac{10(\frac{5}{6})}{(\frac{1}{6})^2} = 10(5)(6) = 300
Section 3.6

75.
 a. \(P(X \leq 8) = F(8;5) = .932 \)
 b. \(P(X = 8) = F(8;5) - F(7;5) = .065 \)
 c. \(P(X \geq 9) = 1 - P(X \leq 8) = .068 \)
 d. \(P(5 \leq X \leq 8) = F(8;5) - F(4;5) = .492 \)
 e. \(P(5 < X < 8) = F(7;5) - F(5;5) = .867 - .616 = .251 \)

76.
 a. \(P(X \leq 5) = F(5;8) = .191 \)
 b. \(P(6 \leq X < 9) = F(9;8) - F(5;8) = .526 \)
 c. \(P(X \geq 10) = 1 - P(X < 9) = .283 \)
 d. \(E(X) = \lambda = 10, \quad \sigma_X = \sqrt{\lambda} = 2.83 \), so \(P(X > 12.83) = P(X \geq 13) = 1 - P(X \leq 12) = 1 - .936 = .064 \)

77.
 a. \(P(X \leq 10) = F(10;20) = .011 \)
 b. \(P(X > 20) = 1 - F(20;20) = 1 - .559 = .441 \)
 c. \(P(10 \leq X \leq 20) = F(20;20) - F(9;20) = .559 - .005 = .554 \)
 \(P(10 < X < 20) = F(19;20) - F(10;20) = .470 - .011 = .459 \)
 d. \(E(X) = \lambda = 20, \quad \sigma_X = \sqrt{\lambda} = 4.472 \)
 \(P(\mu - 2\sigma < X < \mu + 2\sigma) = P(20 - 8.944 < X < 20 + 8.944) \)
 \(= P(11.056 < X < 28.944) \)
 \(= P(X \leq 28) - P(X \leq 11) \)
 \(= F(28;20) - F(12;20)] \)
 \(= .966 - .021 = .945 \)

78.
 a. \(P(X = 1) = F(1;2) - F(0;2) = .982 - .819 = .163 \)
 b. \(P(X \geq 2) = 1 - P(X \leq 1) = 1 - F(1;2) = 1 - .982 = .018 \)
 c. \(P(1^{st} \text{ doesn’t } \cap 2^{nd} \text{ doesn’t}) = P(1^{st} \text{ doesn’t}) \cdot P(2^{nd} \text{ doesn’t}) \)
 \(= (.819)(.819) = .671 \)
Chapter 3: Discrete Random Variables and Probability Distributions

79. \(p = \frac{1}{200}; n = 1000; \lambda = np = 5 \)
 a. \(P(5 \leq X \leq 8) = F(8;5) - F(4;5) = .492 \)
 b. \(P(X \geq 8) = 1 - P(X \leq 7) = 1 - .867 = .133 \)

80.
 a. The experiment is binomial with \(n = 10,000 \) and \(p = .001 \),
 so \(\mu = np = 10 \) and \(\sigma = \sqrt{npq} = 3.161 \).
 b. \(X \) has approximately a Poisson distribution with \(\lambda = 10 \),
 so \(P(X > 10) \approx 1 - F(10;10) = 1 - .583 = .417 \)
 c. \(P(X = 0) \approx 0 \)

81.
 a. \(\lambda = 8 \) when \(t = 1 \), so \(P(X = 6) = F(6;8) - F(5;8) = .313 - .191 = .122 \),
 \(P(X \geq 6) = 1 - F(5;8) = .809 \), and \(P(X \geq 10) = 1 - F(9;8) = .283 \)
 b. \(t = 90 \) min = 1.5 hours, so \(\lambda = 12 \); thus the expected number of arrivals is 12 and the SD
 \(= \sqrt{12} = 3.464 \)
 c. \(t = 2.5 \) hours implies that \(\lambda = 20 \); in this case, \(P(X \geq 20) = 1 - F(19;20) = .530 \) and \(P(X \leq 10) = F(10;20) = .011 \).

82.
 a. \(P(X = 4) = F(4;5) - F(3;5) = .440 - .265 = .175 \)
 b. \(P(X \geq 4) = 1 - P(X \leq 3) = 1 - .265 = .735 \)
 c. Arrivals occur at the rate of 5 per hour, so for a 45 minute period the rate is \(\lambda = (5)(.75) = 3.75 \),
 which is also the expected number of arrivals in a 45 minute period.

83.
 a. For a two hour period the parameter of the distribution is \(\lambda t = (4)(2) = 8 \),
 so \(P(X = 10) = F(10;8) - F(9;8) = .099 \).
 b. For a 30 minute period, \(\lambda t = (4)(.5) = 2 \), so \(P(X = 0) = F(0;2) = .135 \)
 c. \(E(X) = \lambda t = 2 \)
Chapter 3: Discrete Random Variables and Probability Distributions

84. Let X = the number of diodes on a board that fail.

 a. $E(X) = np = (200)(.01) = 2$, $V(X) = npq = (200)(.01)(.99) = 1.98$, $\sigma_X = 1.407$

 b. X has approximately a Poisson distribution with $\lambda = np = 2$,
 so $P(X \geq 4) = 1 - P(X \leq 3) = 1 - F(3;2) = 1 - .857 = .143$

 c. $P($board works properly$) = P($all diodes work$) = P(X = 0) = F(0;2) = .135$
 Let Y = the number among the five boards that work, a binomial r.v. with $n = 5$ and $p = .135$.
 Then

 $$P(Y \geq 4) = P(Y = 4) + P(Y = 5) = \binom{5}{4}(.135)^4 (.865) + \binom{5}{5}(.135)^5 (.865)^0 = .00144 + .00004 = .00148$$

85. $\alpha = 1/($mean time between occurrences$) = \frac{1}{2} = 2$

 a. $\alpha t = (2)(2) = 4$

 b. $P(X > 5) = 1 - P(X \leq 5) = 1 - .785 = .215$

 c. Solve for t, given $\alpha = 2$:

 $$.1 = e^{-\alpha t}$$

 $\ln(.1) = -\alpha t$

 $t = \frac{2.3026}{2} = 1.15$ years

86. $E(X) = \sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^x}{x!} = \sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^x}{x!} = \lambda \sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^x}{x!} = \lambda \sum_{y=0}^{\infty} \frac{e^{-\lambda} \lambda^y}{y!} = \lambda$

87. a. For a one-quarter acre plot, the parameter is $(80)(.25) = 20$,
 so $P(X \leq 16) = F(16;20) = .221$

 b. The expected number of trees is λ(area) = $80(85,000) = 6,800,000$.

 c. The area of the circle is $\pi r^2 = .031416$ sq. miles or 20.106 acres. Thus X has a Poisson distribution with parameter 20.106
88.

a. \[P(X = 10 \text{ and no violations}) = P(\text{no violations} \mid X = 10) \cdot P(X = 10) \]
\[= (.5)^{10} \cdot [F(10;10) - F(9;10)] \]
\[= (.000977)(.125) = .000122 \]

b. \[P(y \text{ arrive and exactly 10 have no violations}) \]
\[= P(\text{exactly 10 have no violations} \mid y \text{ arrive}) \cdot P(y \text{ arrive}) \]
\[= P(10 \text{ successes in } y \text{ trials when } p = .5) \]
\[= \left(\frac{y}{10} \right) (.5)^{10} (.5)^{y-10} e^{-10} \frac{(10)^y}{y!} = \frac{e^{-10} (5)^y}{10!(y-10)!} \]

\[= e^{-5} \cdot \frac{5^{10}}{10!} = p(10;5). \]

In fact, generalizing this argument shows that the number of “no-violation” arrivals within the hour has a Poisson distribution with parameter 5; the 5 results from \(\lambda p = 10(.5) \).

89.

a. No events in \((0, t+\Delta t)\) if and only if no events in \((0, t)\) and no events in \((t, t+\Delta t)\). Thus, \(P_0(t+\Delta t) = P_0(t) \cdot P(\text{no events in } (t, t+\Delta t)) \)
\[= P_0(0)[1 - \lambda \cdot \Delta t - o(\Delta t)] \]

b. \[\frac{P_i(t+\Delta t) - P_i(t)}{\Delta t} = -\lambda P_i(t) \frac{\Delta i}{\Delta t} - P_i(t) \cdot o(\Delta t) \]

\[= -\lambda P_i(t) \frac{\Delta i}{\Delta t} - \lambda P_{i-1}(t) \]

\[= -\lambda e^{-\lambda t} - \lambda P_0(t) \] as desired.

c. \[\frac{d}{dt} [e^{-\lambda t}] = -\lambda e^{-\lambda t} = -\lambda P_0(t) \]

\[= -\lambda e^{-\lambda t} \]

\[= -\lambda e^{-\lambda t} + k \lambda e^{-\lambda t} \]

\[= -\lambda e^{-\lambda t} + \lambda P_{k-1}(t) \]

\[= -\lambda e^{-\lambda t} + \lambda P_{k-1}(t) \] as desired.
Supplementary Exercises

90. Outcomes are (1,2,3)(1,2,4) (1,2,5) … (5,6,7); there are 35 such outcomes. Each having probability \(\frac{1}{35} \). The W values for these outcomes are 6 (=1+2+3), 7, 8, …, 18. Since there is just one outcome with W value 6, \(p(6) = P(W = 6) = \frac{1}{35} \). Similarly, there are three outcomes with W value 9 [(1,2,6) (1,3,5) and 2,3,4], so \(p(9) = \frac{3}{35} \). Continuing in this manner yields the following distribution:

<table>
<thead>
<tr>
<th>W</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(W)</td>
<td>(\frac{1}{35})</td>
<td>(\frac{1}{35})</td>
<td>(\frac{2}{35})</td>
<td>(\frac{3}{35})</td>
<td>(\frac{4}{35})</td>
<td>(\frac{5}{35})</td>
<td>(\frac{6}{35})</td>
<td>(\frac{7}{35})</td>
<td>(\frac{8}{35})</td>
<td>(\frac{9}{35})</td>
<td>(\frac{10}{35})</td>
<td>(\frac{11}{35})</td>
<td>(\frac{12}{35})</td>
</tr>
</tbody>
</table>

Since the distribution is symmetric about 12, \(\mu = 12 \), and

\[
\sigma^2 = \sum_{w=6}^{18} (w-12)^2 p(w) = \frac{1}{35} [(6)^2(1) + (5)^2(1) + \ldots + (5)^2(1) + (6)^2(1)] = 8
\]

91.

a. \(p(1) = P(\text{exactly one suit}) = P(\text{all spades}) + P(\text{all hearts}) + P(\text{all diamonds}) + P(\text{all clubs}) = 4 \cdot \frac{13}{52} \cdot \frac{4}{5} = .00198 \)

\[
p(2) = P(\text{all hearts and spades with at least one of each}) + \ldots + P(\text{all diamonds and clubs with at least one of each})
= 6 \left[P(1 \text{ h and } 4 \text{ s}) + P(2 \text{ h and } 3 \text{ s}) + P(3 \text{ h and } 2 \text{ s}) + P(4 \text{ h and } 1 \text{ s}) \right]
= 6 \left[\frac{13}{52} \cdot \frac{13}{5} + \frac{13}{52} \cdot \frac{12}{5} + \frac{13}{52} \cdot \frac{11}{5} + \frac{13}{52} \cdot \frac{10}{5} \right] = .14592
\]

\[
p(4) = 4P(2 \text{ spades, 1 h, 1 d, 1 c}) = \frac{4 \cdot \binom{13}{2} \cdot \binom{13}{1} \cdot \binom{13}{1} \cdot \binom{13}{1}}{\binom{52}{5}} = .26375
\]

\[
p(3) = 1 - [p(1) + p(2) + p(4)] = .58835
\]

b. \[
\mu = \sum_{x=1}^{4} x \cdot p(x) = 3.114, \sigma^2 = \sum_{x=1}^{4} x^2 \cdot p(x) - (3.114)^2 = .405, \sigma = .636
\]
Chapter 3: Discrete Random Variables and Probability Distributions

92. \[p(y) = P(Y = y) = P(y \text{ trials to achieve } r \text{ S's}) = P(y-r \text{ F's before } r^{th} \text{ S}) \]
\[= nb(y - r, r, p) = \left(\begin{array}{c} y - 1 \\ r - 1 \end{array}\right) p^r (1 - p)^{y-r}, \quad y = r, r+1, r+2, \ldots \]

93.
 a. \(b(x; 15, .75) \)
 b. \(P(X > 10) = 1 - B(9; 15, .75) = 1 - .148 \)
 c. \(B(10; 15, .75) - B(5; 15, .75) = .314 - .001 = .313 \)
 d. \(\mu = (15)(.75) = 11.75, \quad \sigma^2 = (15)(.75)(.25) = 2.81 \)
 e. Requests can all be met if and only if \(X \leq 10 \), and \(15 - X \leq 8 \), i.e. if \(7 \leq X \leq 10 \), so \(P(\text{all requests met}) = B(10; 15, .75) - B(6; 15, .75) = .310 \)

94. \(P(6-v \text{ light works}) = P(\text{at least one 6-v battery works}) = 1 - P(\text{neither works}) \)
\(= 1 - (1 - p)^2. \)
\(P(D \text{ light works}) = P(\text{at least 2 d batteries work}) = 1 - P(\text{at most 1 D battery works}) = 1 - [(1 - p)^2 + 4(1 - p)^3]. \)
\(\text{The 6-v should be taken if } 1 - (1 - p)^2 \geq 1 - [(1 - p)^2 + 4(1 - p)^3]. \)
\(\text{Simplifying, } 1 \leq (1 - p)^2 + 4p(1 - p) \Rightarrow 0 \leq 2p - 3p^3 \Rightarrow p \leq \frac{2}{3}. \)

95. Let \(X \sim Bin(5, .9). \) Then \(P(X \geq 3) = 1 - P(X \leq 2) = 1 - B(2; 5, .9) = .991 \)

96.
 a. \(P(X \geq 5) = 1 - B(4; 25, .05) = .007 \)
 b. \(P(X \geq 5) = 1 - B(4; 25, .10) = .098 \)
 c. \(P(X \geq 5) = 1 - B(4; 25, .20) = .579 \)
 d. All would decrease, which is bad if the % defective is large and good if the % is small.

97.
 a. \(N = 500, \quad p = .005, \) so \(np = 2.5 \) and \(b(x; 500, .005) = \mathcal{P}(x; 2.5), \) a Poisson p.m.f.
 b. \(P(X = 5) = p(5; 2.5) - p(4; 2.5) = .9580 - .8912 = .0668 \)
 c. \(P(X \geq 5) = 1 - p(4; 2.5) = 1 - .8912 = .1088 \)

123
Chapter 3: Discrete Random Variables and Probability Distributions

98. \(X \sim B(x; 25, p) \).
 a. \(B(18; 25, .5) - B(6; 25, .5) = .986 \)
 b. \(B(18; 25, .8) - B(6; 25, .8) = .220 \)
 c. With \(p = .5 \), \(P(\text{rejecting the claim}) = P(X \leq 7) + P(X \geq 18) = .022 + [1 - .978] = .022 + .022 = .044 \)
 d. The claim will not be rejected when \(8 \leq X \leq 17 \).
 With \(p = .6 \), \(P(8 \leq X \leq 17) = B(17; 25, .6) - B(7; 25, .6) = .846 - .001 = .845 \).
 With \(p = .8 \), \(P(8 \leq X \leq 17) = B(17; 25, .8) - B(7; 25, .8) = .109 - .000 = .109 \).
 e. We want \(P(\text{rejecting the claim}) = .01 \). Using the decision rule “reject if \(X = 6 \) or \(X \geq 19 \)” gives the probability .014, which is too large. We should use “reject if \(X = 5 \) or \(X \geq 20 \)” which yields \(P(\text{rejecting the claim}) = .002 + .002 = .004 \).

99. Let \(Y \) denote the number of tests carried out. For \(n = 3 \), possible \(Y \) values are 1 and 4. \(P(Y = 1) = P(\text{no one has the disease}) = (.9)^3 = .729 \) and \(P(Y = 4) = .271 \), so \(E(Y) = (1)(.729) + (4)(.271) = 1.813 \), as contrasted with the 3 tests necessary without group testing.

100. Regard any particular symbol being received as constituting a trial. Then \(p = P(S) = P(\text{symbol is sent correctly or is sent incorrectly and subsequently corrected}) = 1 - p_1 + p_1 p_2 \). The block of \(n \) symbols gives a binomial experiment with \(n \) trials and \(p = 1 - p_1 + p_1 p_2 \).

101. \(p(2) = P(X = 2) = P(S \text{ on #1 and S on #2}) = p^2 \)
 \(p(3) = P(S \text{ on #3 and S on #2 and F on #1}) = (1 - p)p^2 \)
 \(p(4) = P(S \text{ on #4 and S on #3 and F on #2}) = (1 - p)p^2 \)
 \(p(5) = P(S \text{ on #5 and S on #4 and F on #3 and no 2 consecutive S’s on trials prior to #3}) = [1 - p(2)](1 - p)p^2 \)
 \(p(6) = P(S \text{ on #6 and S on #5 and F on #4 and no 2 consecutive S’s on trials prior to #4}) = [1 - p(2) - p(3)](1 - p)p^2 \)
 In general, for \(x = 5, 6, 7, \ldots \): \(p(x) = [1 - p(2) - \ldots - p(x - 3)](1 - p)p^2 \)
 For \(p = .9 \),
 \[
 \begin{array}{c|cccccccc}
 x & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
 \hline
 p(x) & .81 & .081 & .081 & .0154 & .0088 & .0023 & .0010 \\
 \end{array}
 \]
 So \(P(X \leq 8) = p(2) + \ldots + p(8) = .9995 \)

102. \(a. \) With \(X \sim Bin(25, .1) \), \(P(2 \leq X \leq 6) = B(6; 25, .1) - B(1; 25, .1) = .991 - .271 = 720 \)
 \(b. \) \(E(X) = np = 25(.1) = 2.5, \sigma_X = \sqrt{npq} = \sqrt{25(.1)(.9)} = \sqrt{2.25} = 1.50 \)
 \(c. \) \(P(X \geq 7 \text{ when } p = .1) = 1 - B(6; 25, .1) = 1 - .991 = .009 \)
 \(d. \) \(P(X \leq 6 \text{ when } p = .2) = B(6; 25, .2) = .780 \), which is quite large
103. a. Let event $C = \text{seed carries single spikelets}$, and event $P = \text{seed produces ears with single spikelets}$. Then $P(P \cap C) = P(P | C) \cdot P(C) = .29 \cdot (.40) = .116$. Let $X =$ the number of seeds out of the 10 selected that meet the condition $P \cap C$. Then $X \sim \text{Bin}(10, .116)$.

$$P(X = 5) = \binom{10}{5} (.116)^5 (.884)^5 = .002857.$$

b. For 1 seed, the event of interest is $P = \text{seed produces ears with single spikelets}$.

$$P(P) = P(P \cap C) + P(P \cap C') = .116 \text{ (from a)} + P(P | C') \cdot P(C') = .116 + (.26)(.40) = .272.$$

Let $Y =$ the number out of the 10 seeds that meet condition P. Then $Y \sim \text{Bin}(10, .272)$, and $P(Y = 5) = .0767$.

$$P(Y \leq 5) = \binom{10}{0} (.272)^0 (.728)^1 + \cdots + \binom{10}{5} (.272)^5 (.728)^5 = .97024.$$

104. With $S = \text{favored acquittal}$, the population size is $N = 12$, the number of population S’s is $M = 4$, the sample size is $n = 4$, and the p.m.f. of the number of interviewed jurors who favor acquittal is the hypergeometric p.m.f. $h(x; 4, 4, 12)$. $E(X) = 4 \cdot \frac{4}{12} = 1.33$.

105. a. $P(X = 0) = F(0; 2) 0.135$

b. Let $S =$ an operator who receives no requests. Then $p = .135$ and we wish $P(4 \text{ S’s in 5 trials}) = \binom{5}{4} (.135)^4 (.884)^1 = .00144$

c. $P(\text{all receive x}) = P(\text{first receives x}) \cdot \cdots \cdot P(\text{fifth receives x}) = \frac{e^{-2} 2^x}{x!},$ and $P(\text{all receive the same number})$ is the sum from $x = 0$ to ∞.

106. $P(\text{at least one}) = 1 - P(\text{none}) = 1 - e^{-\lambda R^2} \cdot \left(\frac{\lambda^2 \pi R^2}{0!}\right)^0 = 1 - e^{-\lambda \pi R^2} = .99 \Rightarrow e^{-\lambda \pi R^2} = .01$

$$\Rightarrow R^2 = -\frac{\ln(.01)}{\lambda \pi} = .7329 \Rightarrow R = .8561.$$

107. The number sold is $\text{min} (X, 5)$, so $E[\text{min}(X, 5)] = \sum_{x=0}^{5} \min(x, 5) p(x; 4)$

$$= (0)p(0;4) + (1)p(1;4) + (2)p(2;4) + (3)p(3;4) + (4)p(4;4) + 5 \sum_{x=5}^{\infty} p(x;4)$$

$$= 1.735 + 5[1 - F(4;4)] = 3.59$$
108.

a.
\[P(X = x) = P(A\ wins\ in\ x\ games) + P(B\ wins\ in\ x\ games) \]
\[= P(9\ S's\ in\ 1^{st}\ x-1\ \cap\ S\ on\ the\ x^{th}) + P(9\ F's\ in\ 1^{st}\ x-1\ \cap\ F\ on\ the\ x^{th}) \]
\[= \binom{x-1}{9} p^9 (1 - p)^{x-10} p + \binom{x-1}{9} (1 - p)^9 p^{x-10} (1 - p) \]
\[= \binom{x-1}{9} p^{10} (1 - p)^{x-10} + (1 - p)^{10} p^{x-10} \]

b.
Possible values of X are now 10, 11, 12, … (all positive integers \(\geq 10 \)). Now
\[P(X = x) = \binom{x-1}{9} p^{10} (1 - p)^{x-10} + q^{10} (1 - q)^{x-10} \]
for \(x = 10, \ldots , 19 \),

So \(P(X \geq 20) = 1 - P(X < 20) \) and \(P(X < 20) = \sum_{x=10}^{19} P(X = x) \)

109.

a.
No; probability of success is not the same for all tests

b.
There are four ways exactly three could have positive results. Let D represent those with the disease and D' represent those without the disease.

<table>
<thead>
<tr>
<th>Combination</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 0 D' 3</td>
<td>[\binom{5}{0} (.2)^0 (.8)^5 \cdot \binom{5}{3} (.9)^3 (.1)^2] [= (.32768)(.0729) = .02389]</td>
</tr>
<tr>
<td>1 2</td>
<td>[\binom{5}{1} (.2)^1 (.8)^4 \cdot \binom{5}{2} (.9)^2 (.1)^3] [= (.4096)(.0081) = .00332]</td>
</tr>
<tr>
<td>2 1</td>
<td>[\binom{5}{2} (.2)^2 (.8)^3 \cdot \binom{5}{1} (.9)^1 (.1)^4] [= (.2048)(.00045) = .0009216]</td>
</tr>
</tbody>
</table>
| 3 0 | \[\binom{5}{3} (.2)^3 (.8)^2 \cdot \binom{5}{0} (.9)^0 (.1)^5 \] \[= (.0512)(.00001) = .000000512 \]

Adding up the probabilities associated with the four combinations yields 0.0273.
Chapter 3: Discrete Random Variables and Probability Distributions

110. \(k(r,x) = \frac{(x + r - 1)(x + r - 2)...(x + r - x)}{x!} \)

With \(r = 2.5 \) and \(p = .3 \), \(p(4) = \frac{(5.5)(4.5)(3.5)(2.5)}{4!} \cdot (.3)^2 \cdot (.7)^4 = .1068 \)

Using \(k(r,0) = 1 \), \(P(X \geq 1) = 1 - p(0) = 1 - (.3)^{2.5} = .9507 \)

111.

a. \(p(x; \lambda, \mu) = \frac{1}{x!} (\lambda^x \mu^{x-1}) e^{-\lambda \mu} \) where both \(p(x; \lambda) \) and \(p(x; \mu) \) are Poisson p.m.f.'s and thus \(\geq 0 \), so \(p(x; \lambda, \mu) \geq 0 \). Further,

\[
\sum_{x=0}^{\infty} p(x; \lambda, \mu) = \frac{1}{2} \sum_{x=0}^{\infty} p(x; \lambda) + \frac{1}{2} \sum_{x=0}^{\infty} p(x; \mu) = \frac{1}{2} + \frac{1}{2} = 1
\]

b. \(.6 p(x; \lambda) + .4 p(x; \mu)\)

c. \(E(X) = \sum_{x=0}^{\infty} x \left[\frac{1}{2} p(x; \lambda) + \frac{1}{2} p(x; \mu) \right] = \frac{1}{2} \sum_{x=0}^{\infty} xp(x; \lambda) + \frac{1}{2} \sum_{x=0}^{\infty} xp(x; \mu) = \frac{1}{2} \lambda + \frac{1}{2} \mu = \frac{\lambda + \mu}{2} \)

d. \(E(X^2) = \frac{1}{2} \sum_{x=0}^{\infty} x^2 p(x; \lambda) + \frac{1}{2} \sum_{x=0}^{\infty} x^2 p(x; \mu) = \frac{1}{2} (\lambda^2 + \lambda) + \frac{1}{2} (\mu^2 + \mu) \) (since for a Poisson r.v., \(E(X^2) = V(X) + [E(X)]^2 = \lambda + \lambda^2 \)),

so \(V(X) = \frac{1}{2} [\lambda^2 + \lambda + \mu^2 + \mu] - \left[\frac{\lambda + \mu}{2} \right]^2 = \left(\frac{\lambda - \mu}{2} \right)^2 + \frac{\lambda + \mu}{2} \)

112.

a. \(b(x + 1; n, p) = \frac{(n - x) \cdot \frac{p}{(x + 1) \cdot (1 - p)}}{b(x; n, p)} > 1 \) if \(np - (1 - p) > x \), from which the stated conclusion follows.

b. \(\frac{p(x + 1; \lambda)}{p(x; \lambda)} = \frac{\lambda}{(x + 1)} > 1 \) if \(x < \lambda - 1 \), from which the stated conclusion follows. If \(\lambda \) is an integer, then \(\lambda - 1 \) is a mode, but \(p(\lambda; \lambda) = p(1 - \lambda; \lambda) \) so \(\lambda \) is also a mode. \([p(x; \lambda)] \) achieves its maximum for both \(x = \lambda - 1 \) and \(x = \lambda \).
113. \(P(X = j) = \sum_{i=1}^{10} P(\text{arm on track } i \cap X = j) = \sum_{i=1}^{10} P(X = j \mid \text{arm on } i) \cdot p_i \)
where \(p_k = 0 \) if \(k < 0 \) or \(k > 10 \).

114. \(E(X) = \sum_{x=0}^{n} x \cdot \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}} = \sum_{x=1}^{n} \frac{M!}{(x-1)!(M-x)!} \frac{N-M}{n-x} \binom{N}{n} \)

\[n \cdot \frac{M}{N} \sum_{x=1}^{n} \frac{(M-1)}{x-1} \frac{N-M}{n-1} \left(\frac{N-1}{n-1} \right) = n \cdot \frac{M}{N} \sum_{y=0}^{n-1} h(y; n-1, M-1, N-1) = n \cdot \frac{M}{N} \]

115. Let \(A = \{ x : |x - \mu| \geq k\sigma \} \). Then \(\sigma^2 = \sum_A (x - \mu)^2 p(x) \geq (k\sigma)^2 \sum_A p(x) \). But \(\sum_A p(x) = P(X \text{ is in } A) = P(|X - \mu| \geq k\sigma) \), so \(\sigma^2 \geq k^2\sigma^2 \cdot P(|X - \mu| \geq k\sigma) \), as desired.

116.
- a. For \([0,4]\), \(\lambda = \int_0^4 e^{2+6t} dt = 123.44 \), whereas for \([2,6]\), \(\lambda = \int_2^6 e^{2+6t} dt = 409.82 \)
- b. \(\lambda = \int_0^{0.9997} e^{2+6t} dt = 9.9996 = 10 \), so the desired probability is \(F(15, 10) = .951 \).