Solving Recurrences

General Methods

Two general purpose methods for solving recurrences are

1. Guess and confirm.

Sometimes investigating a few terms can lead to a guess that can be verified by another method (usually induction).

Other times we can make a parameterized guess, use the first few terms to solve for the parameters, and then show that the resulting formula is correct. For example, suppose we guess that

\[S(n) = \sum_{i=0}^{n} i = An^2 + Bn + C \]

(a reasonable guess, since we can show that \(S(n) = \Theta(n^2) \)). Then we can solve for \(A \) and \(B \) and \(C \) using \(S(0) = 0 = C \), \(S(1) = 1 = A + B \), and \(S(2) = 3 = 4A + 2B \). This gives \(A = 1/2 \) and \(B = 1/2 \). Induction can be used to verify that \(S(n) = \frac{n^2}{2} + \frac{n}{2} = \frac{n(n+1)}{2} \).

2. Unraveling.

Example. Suppose \(a(0) = 3 \), and \(a(n) = 2a(n - 1) + 1 \). Then

\[
a(n) = 2a(n - 1) + 1
\]

\[
= 2[2a(n - 2) + 1] + 1 = 2^2a(n - 2) + 2 + 1
\]

\[
= 2^2[2a(n - 3) + 1] + 2 + 1 = 2^3a(n - 3) + 2^2 + 2 + 1
\]

\[
= 2^3a(n - k) + [2^{k-1} + \cdots + 2^2 + 2 + 1]
\]

\[
= 2^3a(n - n) + [2^{n-1} + \cdots + 2^2 + 2 + 1]
\]

\[
= 2^n a(0) + [2^{n-1} + \cdots + 2^2 + 2 + 1]
\]

\[
= 2^n \cdot 3 + [2^{n-1} + \cdots + 2^2 + 2 + 1]
\]

\[
= 2^n \cdot 3 + \sum_{j=0}^{n-1} 2^j
\]

Since \(\sum_{j=0}^{n-1} 2^j = 2^{n-1} + \cdots + 2^2 + 2 + 1 = 2^n - 1 \) (provable by induction), our unraveling simplifies to

\[
a(n) = 3 \cdot 2^n + [2^n - 1]
\]

These two methods can be used to find general solutions for classes of recurrences that occur frequently in computer science, especially in recursive code.

Geometric Sums

Sums of the form \(\sum_{i=0}^{n} r^i \) are called geometric sums, and we can always determine their value: Let \(G(n) = \sum_{i=0}^{n} r^i \). Then \(rG(n) - G(n) = r^{n+1} - 1 \) (write out the terms and watch for cancellation), so \(G(n) = \frac{r^{n+1} - 1}{r - 1} \).

Linear (Homogeneous) Recurrences

There are general methods for solving recurrences of the form

\[
a(n) = c_1 a(n - 1) + c_2 a(n - 2) + \cdots + c_k a(n - k) + f(n),
\]

where each of the \(c_i \) is a constant. If \(f(n) = 0 \), then this is a linear homogeneous recurrence relation (with constant coefficients). If \(f(n) \neq 0 \), then this is a linear non-homogeneous recurrence relation (with constant coefficients).
We developed methods for solving the homogeneous case of degree 1 or 2. (Higher degree examples are done in a very similar way. A new wrinkle enters if we do non-homogeneous examples, but straightforward methods exist if \(f(n) \) is a polynomial or exponential function.)

For degree 1, simply unravel. (In fact, we can handle some simple functions \(f(n) \) in this case, too, as we did in the unraveling example above.)

For degree 2, we use the method of parameterized guess and confirm. Our guess will be that the solution has the form

1. \(a(n) = \alpha_1 r_1^n + \alpha_2 r_2^n \), where \(r_1 \) and \(r_2 \) are the two solutions of \(r^2 = c_1 r + c_2 \) [i.e., of \(0 = r^2 - c_1 r - c_2 \)], OR

2. \(a(n) = \alpha_1 r^n + \alpha_2 n r^n \), where \(r \) is the only solution of \(r^2 = c_1 r + c_2 \) [i.e., of \(0 = r^2 - c_1 r - c_2 \)].

It turns out that these guesses are always correct, and it is not terribly difficult to find the parameters involved. We can find the roots of the characteristic polynomial \(0 = r^2 - c_1 r - c_2 \) by factoring or by the quadratic formula. We can then find \(\alpha_1 \) and \(\alpha_2 \) by comparing with the first two terms of the sequence \((a(0) \) and \(a(1)) \).

Examples.

1. \(a(n) = a(n-1) + 2a(n-2) ; a(0) = 5 ; a(1) = 4 \).

 This is linear homogeneous of degree 2. The characteristic polynomial is \(r^2 - r - 2 = (r - 2)(r + 1) \) so the two roots are 2 and -1. \(\alpha_1 2^0 + \alpha_2 (-1)^0 = \alpha_1 + \alpha_2 = a(0) = 5 \), and \(\alpha_1 2^1 + \alpha_2 (-1)^1 = 2\alpha_1 - \alpha_2 = a(0) = 4 \). Solving for \(\alpha_1 \) and \(\alpha_2 \) shows that \(\alpha_1 = 3 \) and \(\alpha_2 = 2 \), so

\[
a(n) = 3 \cdot 2^n + 2(-1)^n = 3 \cdot 2^n \pm 2 .
\]

(Whether we add or subtract 2 depends on the parity of \(n \).)

2. \(a(n) = 6a(n-1) - 9a(n-2) ; a(0) = 2 ; a(1) = 9 \).

 This is linear homogeneous of degree 2. The characteristic polynomial is \(r^2 - 6r + 9 = (r - 3)(r - 3) \) so there is only one root \((3) \). This means that \(a(n) = \alpha_1 3^n + \alpha_2 n 3^n \) for some \(\alpha_1 \) and \(\alpha_2 \). \(\alpha_1 3^0 + \alpha_2 0(3)^0 = \alpha_1 = a(0) = 2 \), and \(\alpha_1 3^1 + \alpha_2 (1)(3)^1 = 2(3) + \alpha_2 (1)(3) = a(1) = 9 \). So \(\alpha_2 = 1 \), and

\[
a(n) = 2 \cdot 3^n + n3^n .
\]

Divide-and-Conquer

Divide-and-conquer recursion leads to running times that can be expressed using recurrences like

\[
f(n) = af(n/b) + g(n) ,
\]

where \(a \geq 1 \) and \(b > 1 \). (Roughly, \(a \) is the number of divisions, \(b \) measures the size of the divisions, and \(g(n) \) is the overhead from the parts of the algorithm not involved in the recursive calls.)

The tools needed to analyze this kind of recurrence are unraveling and geometric sums. Here we will deal with the cases where \(g(n) = Cn^d = O(n^d) \) for constants \(C \) and \(d \). This provides big O estimates whenever \(g(n) \) is a polynomial.

Let’s look at some cases:

1. If \(g(n) = C \) is a constant (i.e., \(d = 0 \)).

 Unraveling yields:

\[
f(n) = af(n/b) + C
\]

\[
= a[af(n/b^2) + C] + C
\]

\[
= a^2f(n/b^2) + C[a + 1]
\]

\[
= a^3f(n/b^3) + C[a^2 + a + 1]
\]

\[
= a^k f(n/b^k) + C[a^{k-1} + a^{k-2} + \cdots + a + 1]
\]

\[
= a^{\log_b(n)} f(1) + C \sum_{j=0}^{\log_b(n)-1} a^j \text{ (geometric sum)}
\]
Solving Recurrences

(a) If \(a = 1 \), then \(f(n) = f(1) + C \log_b(n) = O(\log n): \)

\[
f(n) = a^{\log_b(n)} f(1) + C \sum_{j=0}^{\log_b(n)-1} a^j \\
= 1^{\log_b(n)} f(1) + C \sum_{j=0}^{\log_b(n)-1} 1 \\
= f(1) + C \log_b(n) = O(\log n)
\]

(b) If \(a > 1 \), then \(f(n) = O(n^{\log_b(a)}) \):

\[
f(n) = a^{\log_b(n)} f(1) + C \sum_{j=0}^{\log_b(n)-1} a^j \\
= a^{\log_b(n)} f(1) + C \frac{a^{\log_b(n)} - 1}{a - 1} \\
= a^{\log_b(n)} [f(1) + \frac{C}{a - 1} - \frac{1}{a - 1}] \\
= O(a^{\log_b(n)}) = O(n^{\log_b(a)})
\]

2. If \(g(n) = Cn^d \) \((d > 0) \), then \(f(n) = \begin{cases} O(n^d) & \text{if } d > \log_b(a) \\ O(n^d \log n) & \text{if } d = \log_b(a) \\ O(n^{\log_b(a)}) & \text{if } d < \log_b(a) \end{cases} \)

To show this, we unravel the recurrence:

\[
f(n) = af(n/b) + g(n) \\
= a[af(n/b^2) + g(n/b)] + g(n) \\
= a^2 f(n/b^2) + [ag(n/b) + g(n)] \\
= a^3 f(n/b^3) + [a^2 g(n/b^2) + ag(n/b) + g(n)] \\
= a^k f(n/b^k) + \sum_{j=0}^{k-1} a^j g(n/b^j)
\]

\[
= a^{\log_b(n)} f(1) + \sum_{j=0}^{\log_b(n)-1} a^j C \left(\frac{n}{b^j} \right)^d \\
= a^{\log_b(n)} f(1) + \sum_{j=0}^{\log_b(n)-1} a^j C \left(\frac{n^d}{b^{jd}} \right) \\
= n^{\log_b(n)} f(1) + Cn^d \sum_{j=0}^{\log_b(n)-1} \left(\frac{a}{b^j} \right)^j
\]

Which of these two terms is larger, depends on the relationship of \(a, b, \) and \(d \). If \(a = b^d \) (i.e., \(d = \log_b(a) \)), then the second term above becomes

\[
Cn^d \sum_{j=0}^{\log_b(n)-1} 1 = O(n^d \log(n))
\]

and dominates the first term.

If \(a < b^d \) (i.e., \(d > \log_b(a) \)), then \(n^d > n^{\log_b(a)} \), so the second term again dominates. And since \(\frac{a}{b^j} < 1 \), the geometric sum is bounded by a constant, so \(f(n) = O(n^d) \).
Finally, if \(a > b^d \) (i.e., \(d < \log_b(a) \)), then

\[
f(n) = n^{\log_b(a)} f(1) + C n^d \left(\frac{\log_b(a)}{\log_b(n)} \right) - 1
\]

\[
= n^{\log_b(a)} f(1) + n^d \left(\frac{a}{b^d} \right)^{\log_b(a)} \left(\frac{C}{\log_b(n)} \right) + C \left(\frac{1}{b^d} \right) n^d
\]

\[
= n^{\log_b(a)} \left(f(1) + n^d \frac{a^{\log_b(n)}}{b^d \log_b(n)} \right) \left(\frac{C}{\log_b(n)} \right) + C \left(\frac{1}{b^d} \right) n^d
\]

\[
= n^{\log_b(a)} \left(f(1) + n^d \frac{C}{\log_b(n)} \right) + C \left(\frac{1}{b^d} \right) n^d
\]

\[
= O(n^{\log_b(a)}) + O(n^{\log_b(a)}) + O(n^d) = O(n^{\log_b(a)})
\]

(Notice that the boxed quantities are constants.)

A Handy Identity. Some of the simplification above required us to work with logarithmic and exponential functions. Most of the identities used are probably familiar to you from other courses. One that may not be is identity

\[a^{\log_b(n)} = n^{\log_b(a)} \, . \]

This is worth remembering. To see why it is true, consider taking the logarithm (base \(b \)) of each side.

\[
\log_b(a^{\log_b(n)}) = \log_b(n) \log_b(a) = \log_b(a) \log_b(n) = \log_b(n^{\log_b(a)})
\]

Examples.

1. The running time of a binary search algorithm satisfies \(t(n) = t(n/2) + O(1) \), since we split the array into two halves and recursively check only one and the overhead cost for the split is just a little bit of arithmetic that takes the same amount of time regardless of the size of the array. By the results above \(t(n) = O(\log n) \).

2. The running time of MergeSort satisfies \(t(n) = 2t(n/2) + O(n) \), since we split the array into two halves and recursively sort each one and then have to merge the results (at a fixed cost per item merged). By the results above (this is a case where \(a = 2 > 1 \) and \(d = \log_b(a) = \log_2(2) \)):

\[
t(n) = O(n \log n) \, .
\]