Big O Big Idea

The big idea for Big O is the following:

- Ignore constant coefficients.

 Constant multiples are roughly equivalent to hardware changes. Besides, this makes analysis much easier.

 (Note: sometimes the constants do matter; then a finer analysis is required.)

- Consider asymptotic behavior (large inputs)

 Most algorithms run reasonably well on small enough inputs. But as the inputs get larger and larger, performance worsens. Big O will be a measure of how performance degrades with input size.

Worst Case Upper Bounds

Big O provides upper bounds (says our algorithms will be no slower than something). Usually we will get upper bounds on worst case performance. This will then mean we have an upper bound (performance guarantee) on all cases. Big O can, however, be used to bound average case, best case, etc., if that is what we are interested in.

The Definition

We say that \(f = O(g) \) (read “\(f \) is Big O of \(g \)”), if there is some constant \(k \) such that for large input sizes \(n \): \[f(n) \leq k g(n) \]

That is, if we ran an algorithm with performance \(f \) on a suitably fast machine, it would perform better than an algorithm with performance \(g \) on a slower machine (\(k \) times as slow).

Just the Facts

Here are the most important rules for working with Big O (assume that \(f \) and \(g \) are positive and increasing, like running times for most algorithms). In Big O expressions we can

<table>
<thead>
<tr>
<th>replace</th>
<th>with</th>
<th>provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kf(n))</td>
<td>(f(n))</td>
<td>(k) is a constant</td>
</tr>
<tr>
<td>(f(n) + g(n))</td>
<td>(\max(f(n), g(n)))</td>
<td>no restrictions</td>
</tr>
<tr>
<td>(f)</td>
<td>(g)</td>
<td>(f = O(g)) in sums and products</td>
</tr>
<tr>
<td>a polynomial</td>
<td>(x^n)</td>
<td>(n) is the degree of the polynomial</td>
</tr>
</tbody>
</table>

Get in Line

The most important functions, in order from smallest to biggest are:

\[1, \log(n), n, n \log n, n^2, n^3, 2^n, 3^n, n! \]

The Rest of the Family

Big O is used for giving upper bounds (\(f = O(g) \) means \(f \) is no worse than \(g \), at least as far as big O measures). For lower bounds, and “roughly equal” we use “big Omega” and “big Theta” (\(\Omega \) and \(\Theta \)):

\[f = \Omega(g) \quad \text{means} \quad g = O(f). \]

\[f = \Theta(g) \quad \text{means} \quad f = O(g) \quad \text{and} \quad g = O(f). \]

So big O is a lot like \(\leq \), big Omega is a lot like \(\geq \), and big Theta is a lot like \(= \).