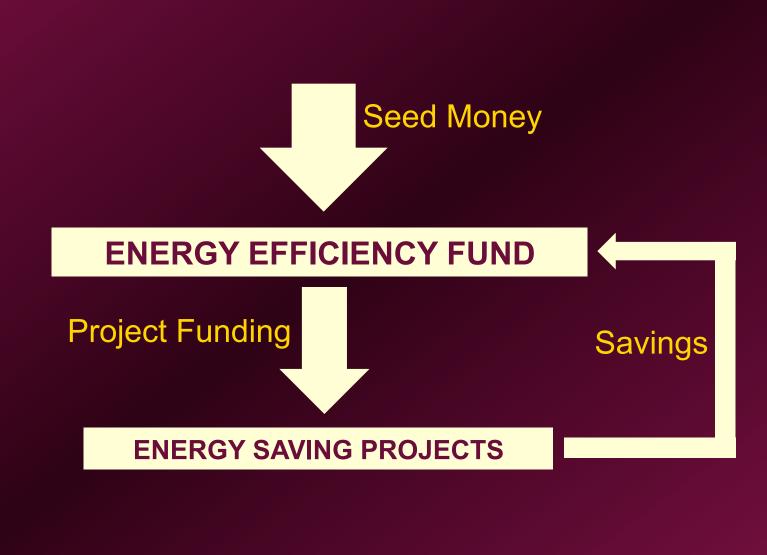
ENGR 333 Presentation


What would it take for Calvin to implement an energy efficiency fund?

Calvin Energy Efficiency Fund

CALVIN College

What is an Energy Efficiency Fund?

What Colleges Have This Type of Fund?

Harvard University

- Green Loan Fund
 - Savings ~\$900,000 (30% ROI)

University of Michigan

- Energy Conservation Measures Fund
 - Projected savings of \$5.7 million
- UC Berkeley
- Macalester College

Source: Diebolt, Asa. Creating a Campus Sustainability Revolving Loan Fund: A Guide for Students ©2007

Why is this Type of Fund Important?

- Conserves energy and money
- Educates about sustainability and fiscal responsibility
- Improves record and visibility of creation care
- Recycles savings to make change

The Question

What would it take for Calvin to implement an energy efficiency fund?

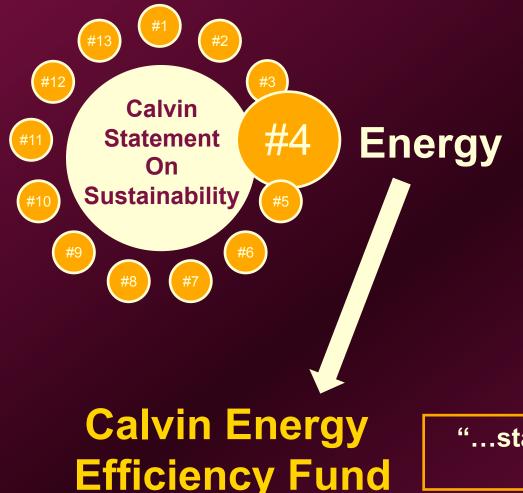
Answering the Question

Policy Group

 Develop structure and policies to govern the Calvin Energy Efficiency Fund (CEEF)

Technical Groups 1-3

 Research and analyze proposed CEEF projects for energy savings


Financial Group

 Analyze financial cash flows of CEEF and proposed projects

Policy Group

- Mission Statement
- Management
- Project Types
- Project Life Cycle
- Cost Responsibilities
- Allocation
- Project Hand-off

CEEF Mission Statement

"We continually investigate new technologies for *improved energy systems* and *more efficient use of energy resources*."

"Promote linkage between energy conservation effort with programs to reduce carbon dioxide emissions and contributions to global warming."

"...starting points for education and action."

CEEF Mission Statement

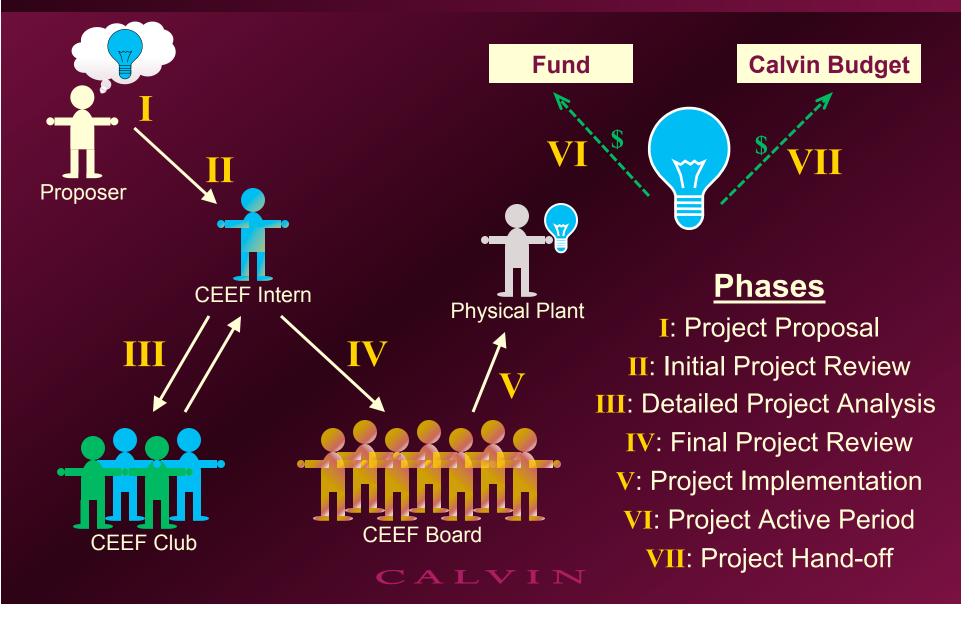
The purpose of the Calvin Energy **Efficiency Fund is to pursue our** calling to be stewards of God's creation by implementing a process through which Calvin's Campus can promote and realize a goal of energy stewardship and accommodate renewable and sustainable energyand cost-saving projects.

CEEF Management

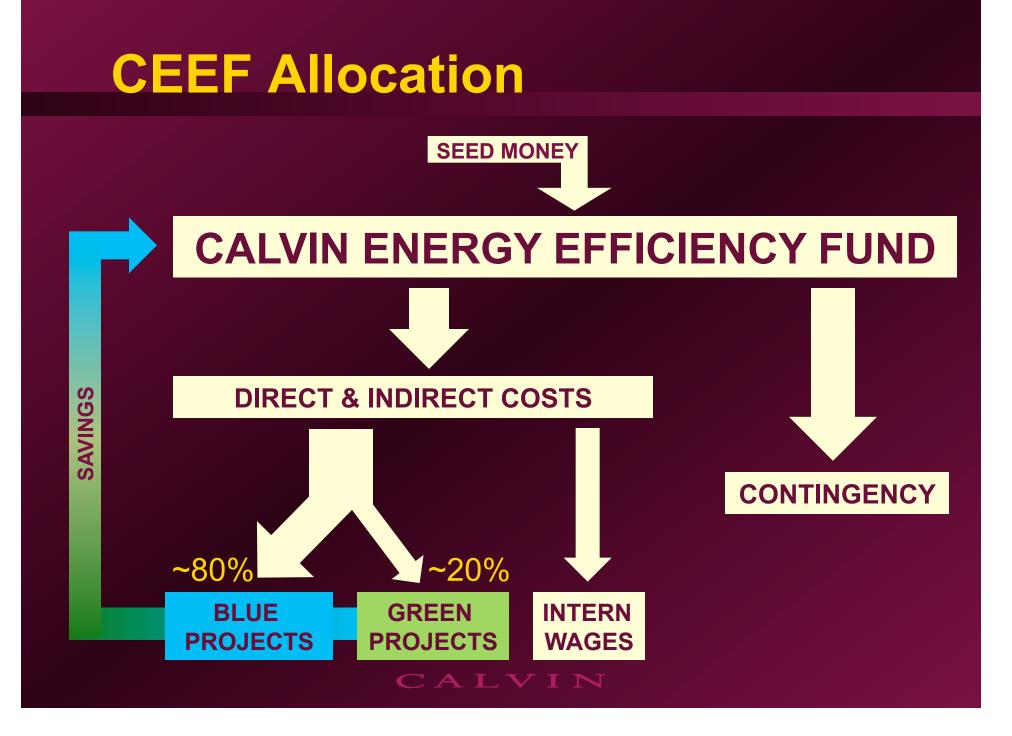
- Final project approval
- Allocates finances
- Liaison b/w Board & Club
- Leads CEEF Club
- Conducts research and savings analysis

CEEF Project Types

Blue Projects


- Short term energy efficiency projects
 - ≤ 10 yr payback

Green Projects


- Reduce carbon emissions
- Raise awareness for sustainability and renewable energy
- Long term energy efficiency projects
 - > 10 yr payback

Project Life Cycle

Cost Responsibilities

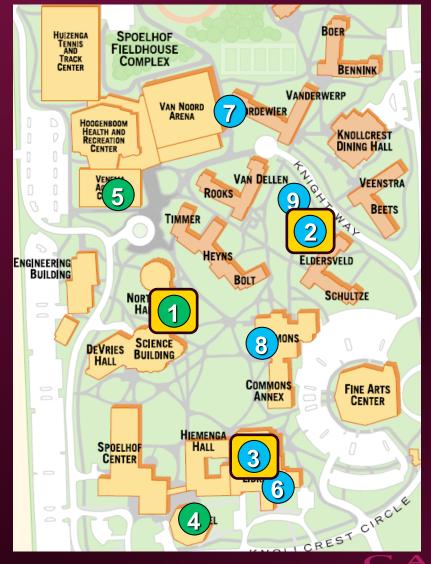
- Direct Costs
 - Differential Project Costs
 - Labor
 - Materials
 - Maintenance
- Indirect Costs
 - CEEF Intern Wages

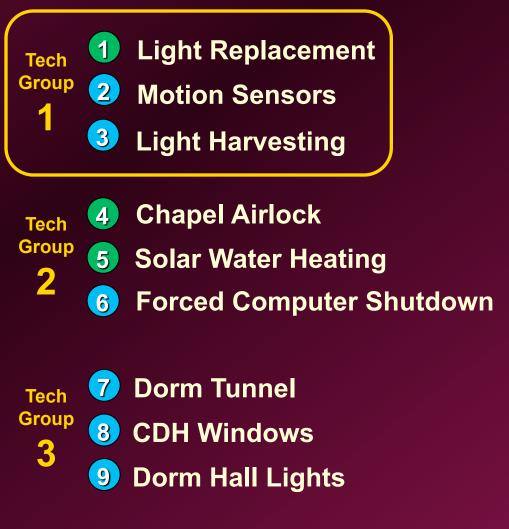
CEEF Project Hand-off

- Release of Project from CEEF
 - 5 years after complete payback period
 - In out-year dollars
 - All costs and savings assumed by Calvin College

- **1.** Solar path lights / switch to LEDs
- 2. Get rid of food trays in dining halls to cut down on dish washing and food costs
- 3. Decrease mowing / lawn care costs with more gardens / wooded areas
- 4. Add radiator thermostats to each dorm room (regulate dorm heating better)
- 5. Hand dryers in restrooms instead of paper towels
- 6. Isolate air conditioning to offices and labs in the summer
- 7. More efficient dryers in dorms or promote use of clothes lines for drying laundry instead
- 8. Consolidate or ban mini-fridges in dorms and replace with large kitchen fridge system
- 9. Use exhaust heat from the dining hall ovens and/or wash/dry cycle to heat the dining hall and/or nearby buildings
- **10.** Recycle rain and snow melt water for irrigation
- 11. Disable handicap doors when button is not pressed so door shuts quicker during normal operation

- **12.** Recycle drinking fountain waste water
- **13.** Reroute Sem. Pond to produce hydro-electric power
- 14. Bookstore textbook reservation boxes that can be returned and reused
- **15.** Food scrap composting bins in the dining hall
- **16.** Install push button sink faucets and/or showers in dorms
- **17.** Professors use electronic distribution and submission of assignments, notes, etc.
- Students pay for trash (especially at move-out time)
- 19. More efficient toilets (less water used in flushing)
- 20. Campus safety on bikes, hybrid cars or Segways (decrease campus safety car usage in general)
- 21. Provide incentive for students and professors to walk, take the bus, or ride bikes to campus
- 22. More efficient dining hall ovens and/or dish washers/dryers.





Project Specifics:

- Proposed Project
- Project Details
- Energy Savings
- Upfront Costs

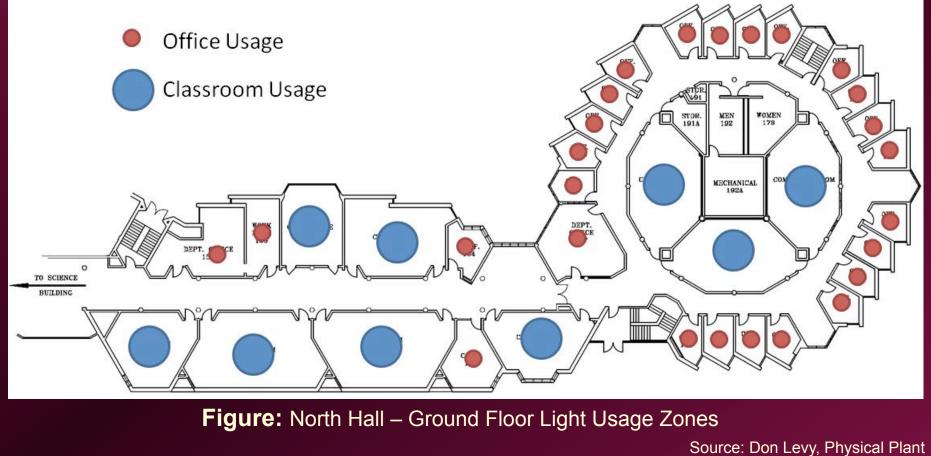
Tech Group 1 Project Overviews

Descriptions: North Hall - Light Replacement $T12 \rightarrow T5$ **Res. Hall Basements - Motion Sensors** 2 Study, Laundry, Common (x2 wings) 3 Hekman Library - Light Harvesting Automatic sensors – switch off lights based on light coming from windows (5th Floor)

Tech Group 1 Analysis Results

ENERGY SAVINGS / UPFRONT COSTS

	Project Location	Energy Savings [kWh/yr]	1 st Year Cost Savings [\$]	Upfront Costs [\$]	Payback Period [yr]
1	North Hall – Light Replacement	45,220 (±22%)	\$3,920	\$59,420 (±10%) + \$87.92/yr (ongoing)	12
2	Residence Hall Basements – Motion Sensors	86,420 (±18%)	\$7,500	\$25,900 (±10%)	3
3	Hekman Library – 5 th Floor Light Harvesting	12,320 (±7%)	\$1,070	\$4,320 (±10%)	3


Note: All \$ amounts are in 2008 values.

 1 North Hall - Light Replacement
 Current: T12 lamps and fixtures, magnetic ballasts
 Upgrade: T5 lamps, RT5 fixtures, electronic ballasts

1 North Hall - Light Replacement

1 North Hall - Light Replacement

Energy Consumption

Existing	Proposed
0.75 A	0.5 A
0.09 kW	0.06 kW
460 fixtures	352 fixtures
88,030 kWh/yr	42,810 kWh/yr

Energy Savings: 45,220 kWh/yr

1st Year Cost Savings: **\$3,920**

1 North Hall - Light Replacement Upfront Costs

• T5 lamp:

- Electronic ballast:
- RT5 fixture:
- Other materials:
- Labor: \$6,160 (½ hour labor per fixture at \$35/hr)

\$5.21 (2 per fixture)

\$2500 per floor

\$35.92 (1 per fixture)

\$84.00 ea (352 fixtures)

TOTAL: \$5

Ongoing Costs

 T5 Lamp replace:
 ~\$4.00 ea (life = 8-10 yr)

 TOTAL ONGOING:
 \$87.92 / year

2 Residence Halls – Motion Sensors

Install motion detectors in all residence hall basement common areas:

Study room Common room Laundry room

"Dual Technology" ultrasonic + infrared

Figure: WattStopper DT-300 (Ceiling Mounted) Source: www.wattstopper.com

2 Residence Halls – Motion Sensors

Common Room:4 sensors (DT-300 ceiling mounted)Study Room:1 sensor (DT-300 ceiling
mounted)

Laundry Room: 1 sensor (DT-200 wall mounted) Laundry Study Common MECH. Room Room Room 23A COMP. MECH. MECH. 21 ROOM CPLX STORAGE TRUNK ROOM CNCI 26 24A

Figure: Vanderwerp Basement – Motion Sensor Rooms

Source: Don Levy, Physical Plant

2 Residence Halls – Motion Sensors

Energy Consumption

• Usage Hours

Room	Existing	Proposed	
Study	16 hrs/day	10 hrs/day	(20 fixtures)
Laundry	12 hrs/day	4 hrs/day	(12 fixtures)
Common	24 hrs/day	16 hrs/day	(30 fixtures)

Assumption: 243 days/year (lights off in the summer)

2 Residence Halls – Motion Sensors

Energy Consumption

Room	Existing [kWh/yr]	Proposed [kWh/yr]
Study	3,920	2,450
Laundry	2,650	880
Common	8,820	5,880
TOTAL (all 14 wings)	215,350	128,940

Energy Savings: 86,420 kWh/yr

1st Year Cost Savings: **\$7,500**

2 Residence Halls – Motion Sensors

Upfront Costs

- DT-300 (ceiling):
- DT-200 (wall):
- Material/Labor
 - Study

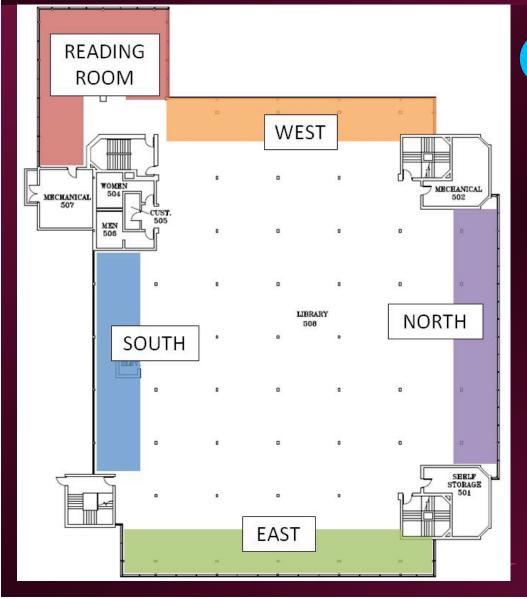
Laundry

\$300/room \$150/room

\$150 ea (study + common)

\$50 ea (laundry)

Common \$600/room


\$25,900 TOTAL (all wings):

3 Hekman Library – Light Harvesting

Install "light harvesting" system on 5th Floor

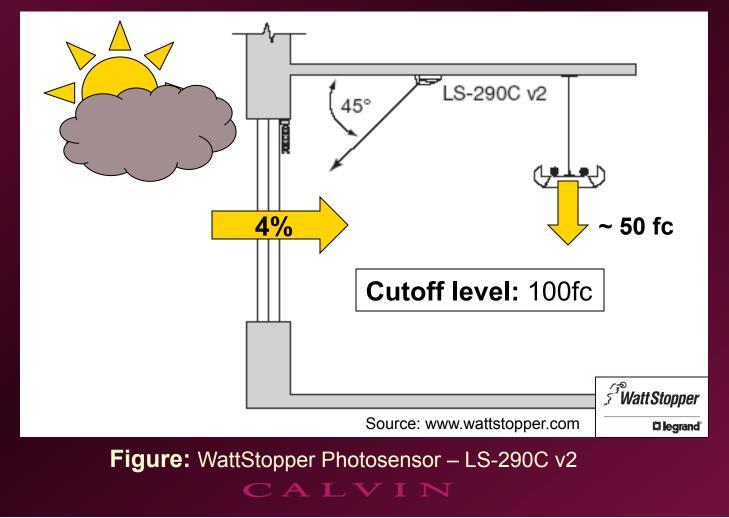
Current:T8 fluorescent lamps and fixtures0.42 A per fixture

Upgrade: Add daylight photosensors 121 fixtures in five "zones"

3 Hekman Library

Lighting zones

- 15 ft from windows
- Five zones, controls


Light levels

Minimum: ~ 50 fc

Simplicity on/off only no dimming!

Source: Don Levy, Physical Plant

3 Hekman Library – Light Harvesting

3 Hekman Library – Light Harvesting

Energy Consumption

	Zone	Existing [kWh/yr]	Proposed [kWh/yr]	
	North	6,930	3,670	(32 fixtures)
	East	4,120	2,180	(19 fixtures)
	South	3,680	1,950	(17 fixtures)
	West	4,550	2,410	(21 fixtures)
Energy Savings:	Reading Room	6,930	3,670	(32 fixtures)
12,325 kWh/yr	TOTAL	26,200	13,880	(121 fixtures)

1st Year Cost Savings: **\$1,070**

3 Hekman Library – Light Harvesting

Upfront Costs

- Sensor Package: \$500 ea (x5 zones)
- Other materials:
- Labor:

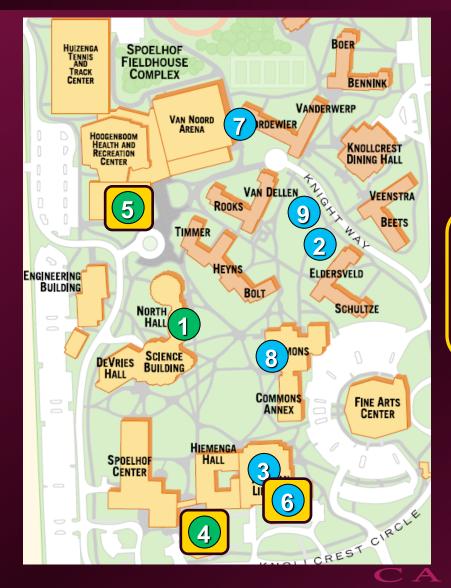
\$420 \$1,400 (8 hours per zone at \$35/hour)

TOTAL:	\$4,320
--------	---------

Dimming Ballasts (option)

- Dimming Ballast: \$100 ea (121 fixtures)
- Added Labor: \$2,120 (1/2 hr per fixture)

TOTAL (w/ dimming): **\$18,600**


Tech Group 1 Analysis Results

ENERGY SAVINGS / UPFRONT COSTS

	Project Location	Energy Savings [kWh/yr]	1 st Year Cost Savings [\$]	Upfront Costs [\$]	Payback Period [yr]
1	North Hall – Light Replacement	45,220 (±22%)	\$3,920	\$59,420 (±10%) + \$87.92/yr (ongoing)	12
2	Residence Hall Basements – Motion Sensors	86,420 (±18%)	\$7,500	\$25,900 (±10%)	3
3	Hekman Library – 5 th Floor Light Harvesting	12,320 (±7%)	\$1,070	\$4,320 (±10%)	3

Note: All \$ amounts are in 2008 values.

4 Chapel Airlock

Tech

2

Group

3

- Group 5 Solar Water Heating
 - **6** Forced Computer Shutdown
- Tech 7 Dorm Tunnel
 - **8** CDH Windows
 - 9 Dorm Hall Lights

Tech Group 2 Project Overviews

Descriptions:

Chapel – Chapel Airlock

Vestibule on main entrance

Fieldhouse – Solar Water Heating

Solar collectors on roof to heat water

All Campus – Forced Computer Shutdown Program to turn-off Calvin owned computers

Tech Group 2 Analysis Results

ENERGY SAVINGS / UPFRONT COSTS

	Project Location	Energy Savings	1 st Year Cost Savings [\$]	Upfront Costs [\$]	Payback Period [yr]
4	Chapel – Chapel Airlock	1640 [therms/yr] (+20%/-50)	\$1,400	\$18,000 (±15%)	11
5	Fieldhouse – Solar Water Heating	98,800 [therms/yr] (±10%)	\$81,800	\$3,530,000 (+5%/-20)	26
6	All Campus – Forced Computer Shutdown	348,600 [kWh/yr] (±7%)	\$30,300	\$20,600 (±10%)	0

Note: All \$ amounts are in 2008 values.

4 Chapel – Chapel Airlock
 Existing: Single bank of doors
 Proposed: Double door airlock

4 Chapel – Chapel Airlock

Energy Savings

- Summer vs. Academic Year
- Savings based on MIT study using
 - Traffic rate (100 people/hr)
 - Pressure differential (0.01" water)
 - Number of doors (6)

Energy Savings: 1,640 therms/yr

1st Year Cost Savings: **\$1,400**

Assumption: Doors will not be held open Auditing: Compare data to historical data

4 Chapel – Chapel Airlock

Upfront Costs

Construction:

\$18,000*

TOTAL : \$18,000

*This is based on a quote that will need to be updated if project is approved

5 Fieldhouse – Solar Water Heating

Energy Savings

- Can be incorporated to heat the pool or campus hot water supply
- Solar energy data taken from Thermo Technologies
- Assumes 1,000 collectors on south side of Fieldhouse roof (max capacity)

Energy Harvested: 98,800 therms/yr

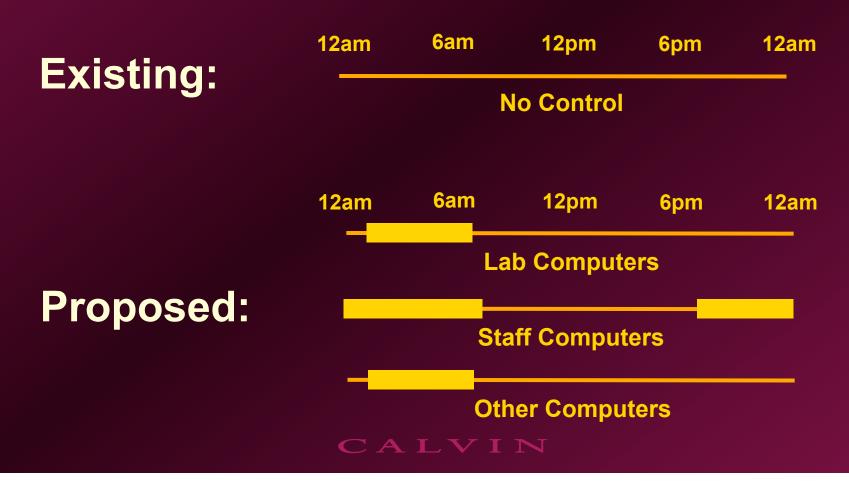
1st Year Cost Savings: **\$81,800**

Auditing: Controller unit records energy savings

5 Fieldhouse – Solar Water Heating

Upfront Costs

- Solar Collector: \$3,450*
- Pump:


- \$3,450* ea (x 1000**)
- \$1,700
- Heat Exchanger: \$31,300
- Piping:
- Labor:

- \$14,300 (18\$/ft)
- \$45,500 (35 \$/hr,
- 1.3 hr/collector)

TOTAL: \$3,540,000

- * This is based on a quote for a single panel, a discount can be expected for a large order
- ** The system is scalable. 1000 collectors is the max $\bigcirc A \sqcup \lor I \lor$

6 All Campus - Forced Computer Shutdown Projected Energy Savings

	Days/Yr	Shutdown Hours	Energy Savings [kWh/yr]
Lab Computers	200	1 am-7 am	36,697
Staff Computers	300	6 pm-7 am	198,449
Other Computers	200	1 am-7 am	113,455

Energy Savings: 348,600 kWh/yr

1st Year Cost Savings: **\$30,300**

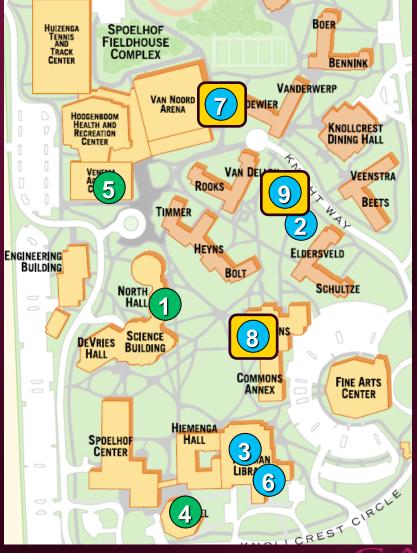
Auditing: Software calculates energy savings

6 All Campus - Forced Computer Shutdown Upfront Costs Labor: \$175 (5 hrs @ \$35/hr) Licensing Cost : \$20,434 (\$7.20 per station) No Renewal Fee

Software is an add-on to Deep Freeze

TOTAL: **\$20,600**

Tech Group 2 Analysis Results


ENERGY SAVINGS / UPFRONT COSTS

	Project Location	Energy Savings	1 st Year Cost Savings [\$]	Upfront Costs [\$]	Payback Period [yr]
4	Chapel – Chapel Airlock	1640 [therms/yr] (+20%/-50)	\$1,400	\$18,000 (±15%)	11
5	Fieldhouse– Solar Water Heating	98,800 [therms/yr] (±10%)	\$81,800	\$3,530,000 (+5%/-20)	26
6	All Campus – Forced Computer Shutdown	348,600 [kWh/yr] (±7%)	\$30,300	\$20,600 (±10%)	0

Note: All \$ amounts are in 2008 values.

Proposed CEEF Projects

- **Motion Sensors** 3 **Light Harvesting**
- **Chapel Airlock** 4
- 5 **Solar Water Heating**
- 6 **Forced Computer Shutdown**
- 7 **Dorm Tunnel** Tech Group
 - 8 **CDH Windows**
 - 9 **Dorm Hall Lights**

3

Tech

Group

2

Tech Group 3 Project Overviews

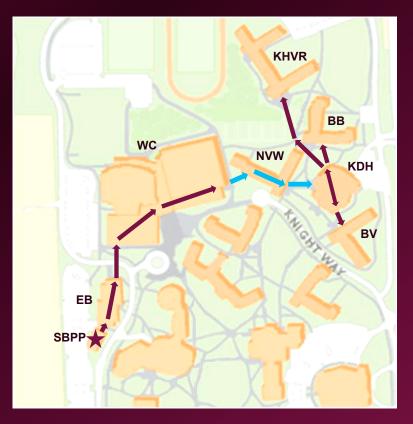
Descriptions: Underground – Dorm Tunnels Tunnels to re-route HVAC piping and disconnect steam boilers **Commons Dining Hall – Windows** 8 Replace single for double paned windows **Res. Halls – Dorm Hall Lights** 9 Shut-off hall lighting at additional times

Tech Group 3 Analysis Results

ENERGY SAVINGS / UPFRONT COSTS

	Project Location	Energy Savings	1 st Year Cost Savings [\$]	Upfront Costs [\$]	Payback Period [yr]
7	Underground – Dorm Tunnels	51,105 (±10%) [therms /yr]	\$42,330	\$83,500 (±11%)	1
8	Commons Dining Hall – Windows	24,800 [therms/yr] + 2,370 [kWh/yr] (±10%)	\$17,710	\$165,000 (±10%)	8
9	Residence Halls – Lights	18,542 (±10%) [kWh/yr]	\$1,610	\$35 (±20%)	0

Note: All \$ amounts are in 2008 values.



- **Underground Dorm Tunnels Existing:** Steam boilers in KDH (~63% efficient) (Supply to 4 dorms and KDH)
 - Proposed:Connect via tunnel to hot waterboilersin SB plant (~92% efficient)(Supply most of Campus)

Current Heating Loop

Proposed Heating Loop

7 Underground – Dorm Tunnels

Energy Consumption:

Heating load only

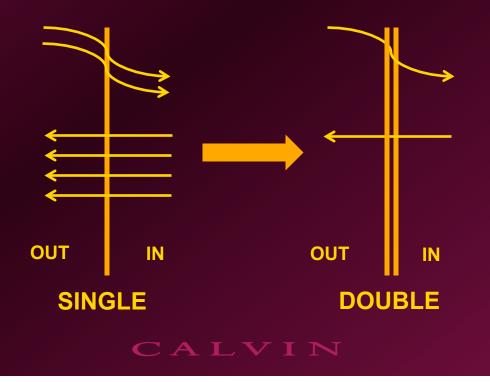
Existing	Proposed		
~ 63% efficient	~ 92% Efficient		
162,000 [therms/yr]	111,000 [therms/yr]		
Energy Savings: 51,000 therms/yr			
1 st Year Cost Savings: \$42,330			

Assumptions: 75% of natural gas supplied to steam boilers is used for heating

Auditing: Monitor yearly changes in natural gas supply

Source: Paul Pennock, Physical Plant

7 Underground – Dorm Tunnels Upfront Costs:


- Tunneling and Piping: \$83,500
 - 200 feet tunneling

Includes all labor and materials for: excavation, concrete work and sealing, heating pipes and fixtures, backfill, seed

Hot water pipes through dorm connecting systems Additional Benefits:

Space provided in tunnel for addition of cooling pipes

8 Commons Dining Hall – Windows
 Existing: Single Pane Windows
 Proposed: Double Pane Windows

7 Commons Dining Hall – Windows Energy Consumption:

	Existing	Proposed	
Heating	5120 [therms/yr]	1840 [therms/yr]	
Cooling	73300 [kWh/yr]	72300 [kWh/yr]	

Energy Savings: 24,759 therms/yr + 2,373 kWh/yr

1st Year Cost Savings: **\$17,710**

8 Commons Dining Hall – Windows

Upfront Costs:

\$165,000

Includes: Labor and Material

Source: Vos Glass

 9 Residence Halls – Dorm Hall Lights
 Current: Shut off ½ lights 11pm – 6am
 Upgrade: Shut off ½ lights 11pm – 6am & 11am – 4pm

9 Residence Halls – Dorm Hall Lights Energy Consumption

Existing	Proposed	
7 hours off	12 hours off	
162,000 [kWh/yr]	143,000 [kWh/yr]	

Energy Savings: 19,000 kWh/yr

1st Year Cost Savings: **\$1,610**

Upfront Costs: \$35 (1 hour labor)

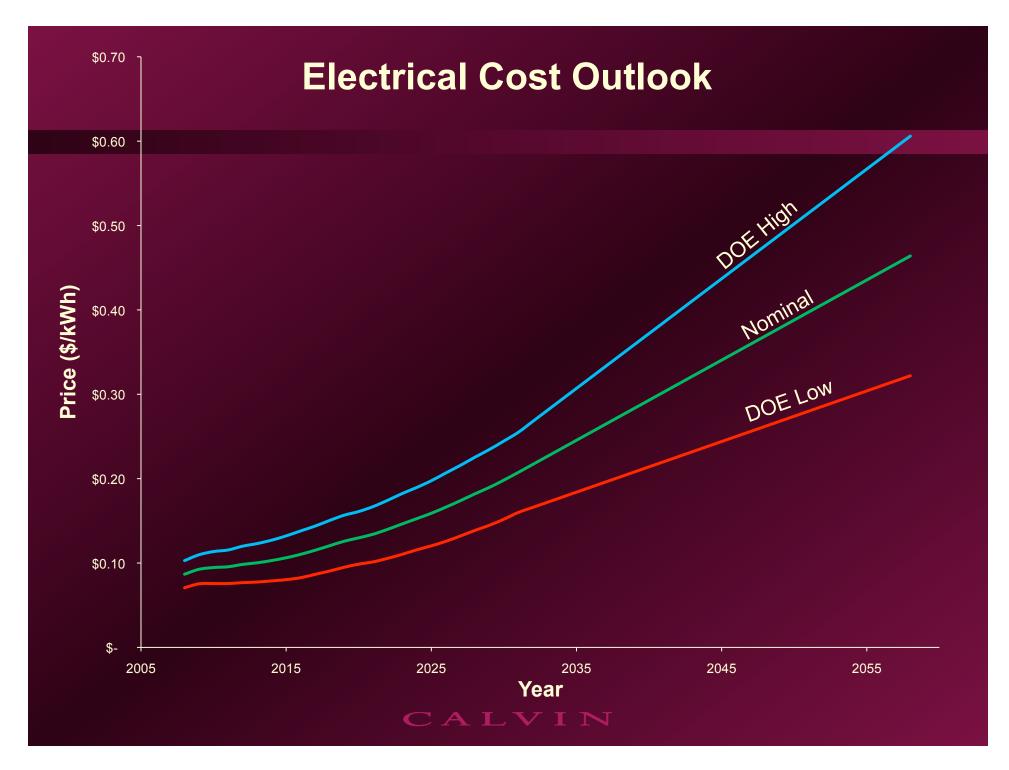
Tech Group 3 Analysis Results

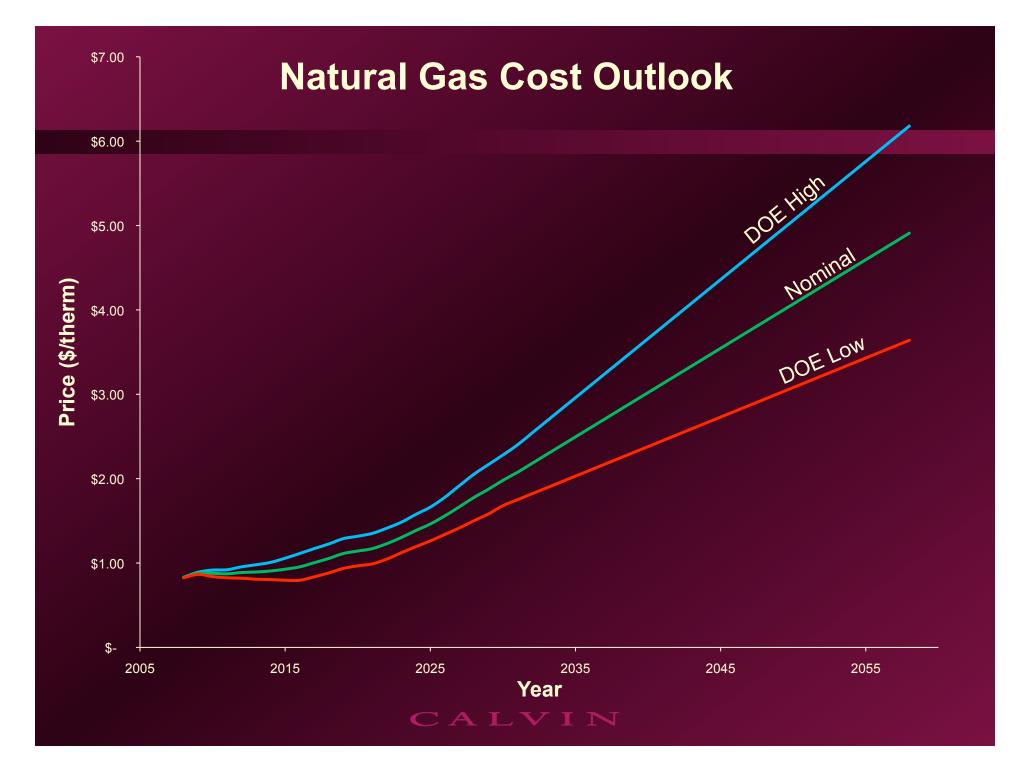
ENERGY SAVINGS / UPFRONT COSTS

	Project Location	Energy Savings	1 st Year Cost Savings [\$]	Upfront Costs [\$]	Payback Period [yr]
7	Underground – Dorm Tunnels	51,105 (±10%) [therms/yr]	\$42,330	\$83,500 (±11%)	1
8	Commons Dining Hall – Windows	24,800 [therms/yr] + 2,370 [kWh/yr] (±10%)	\$17,710	\$165,000 (±10%)	8
9	Residence Halls – Lights	18,542 (±10%) [kWh/yr]	\$1,610	\$35 (±20%)	0

Note: All \$ amounts are in 2008 values.

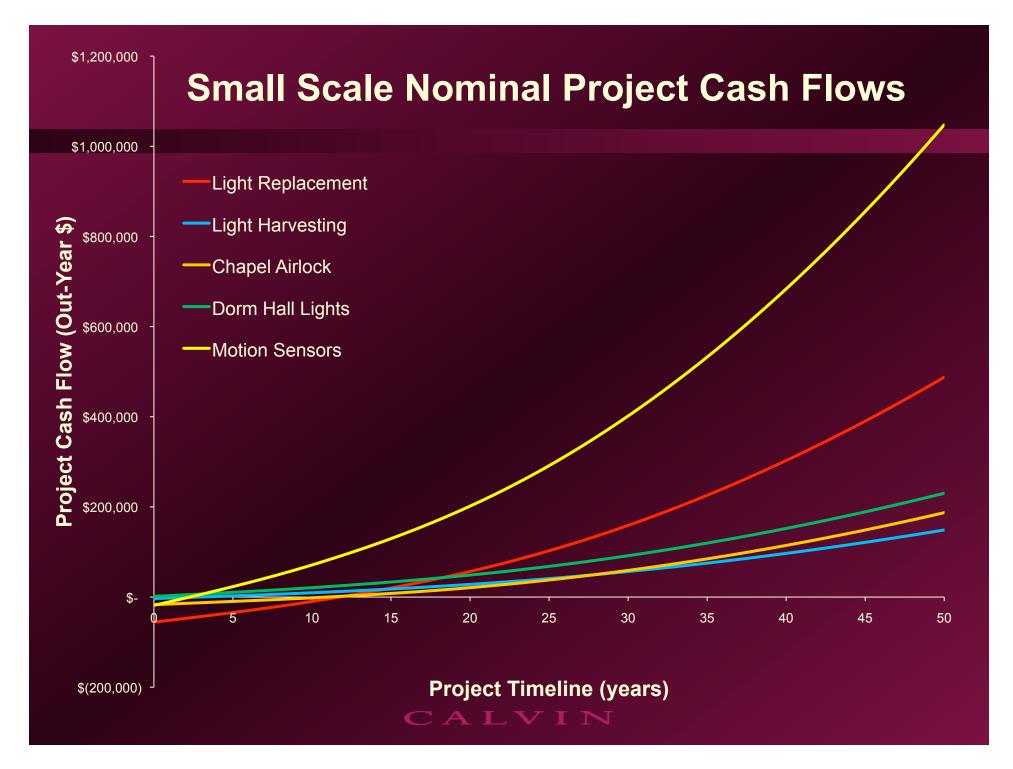
Financial Group

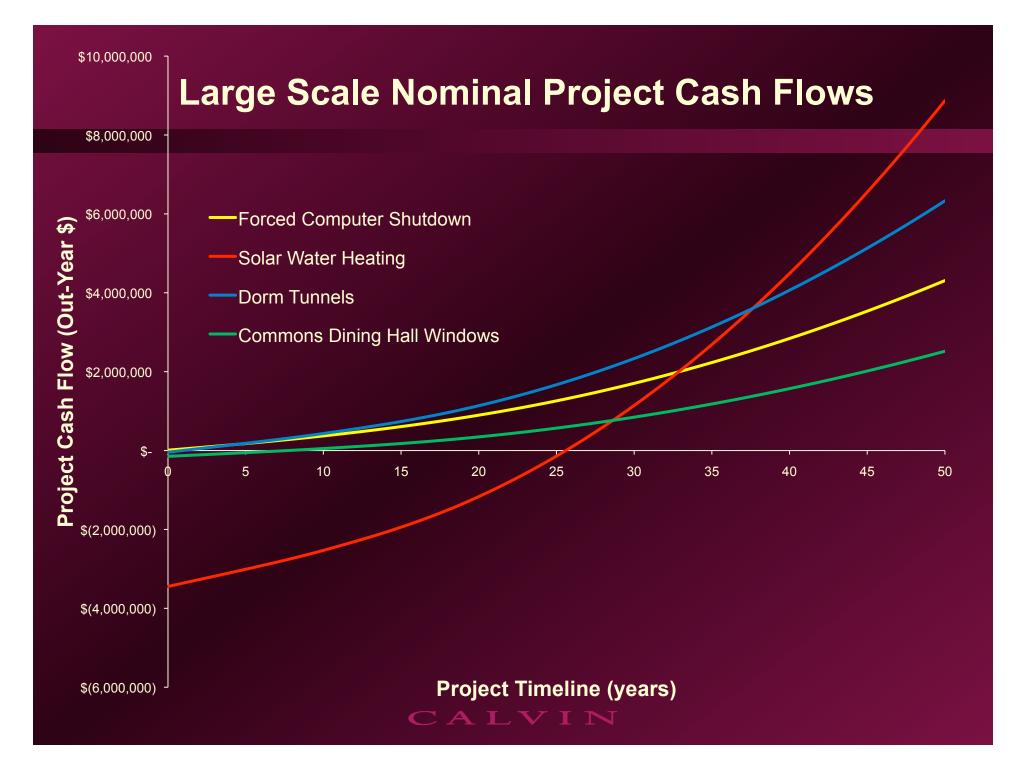

- Energy Projections
 - Electrical Cost Outlook
 - Natural Gas Cost Outlook
- Project Evaluation Approach
 - Project Cash Flow Diagrams
 - Project Payback Periods
- Project Implementation Dates
- Financial Considerations
- Pessimistic & Optimistic Cases
- Fund Cash Flow Diagram

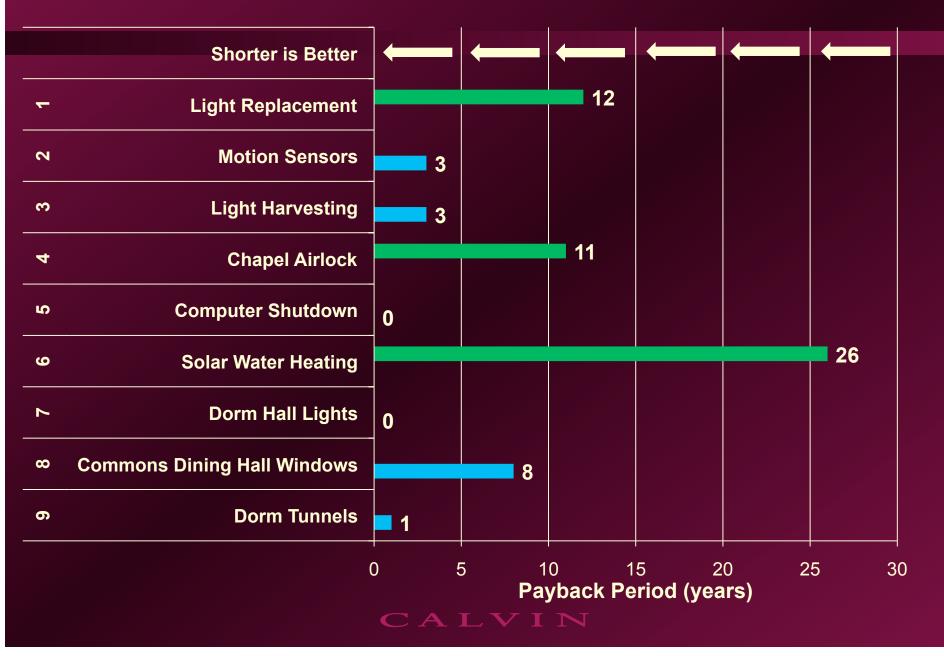

Energy Projections

US Department of Energy Annual Energy Outlook (2008)

- Modeled until 2030
- Linear projection beyond 2030
- DOE Assumptions:
 - Oil & gas supplies have 20% exponential decline
 - Shallow water natural gas supplies have 30% exponential decline
 - Costs to produce renewable energy decline





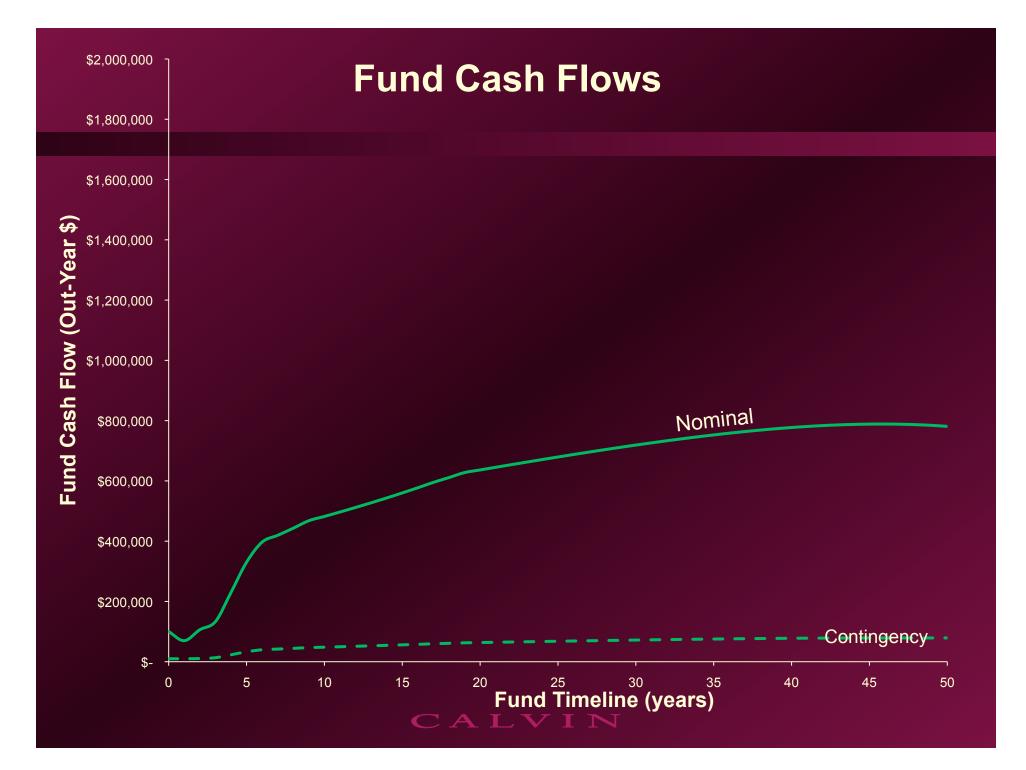

Project Evaluation Approach

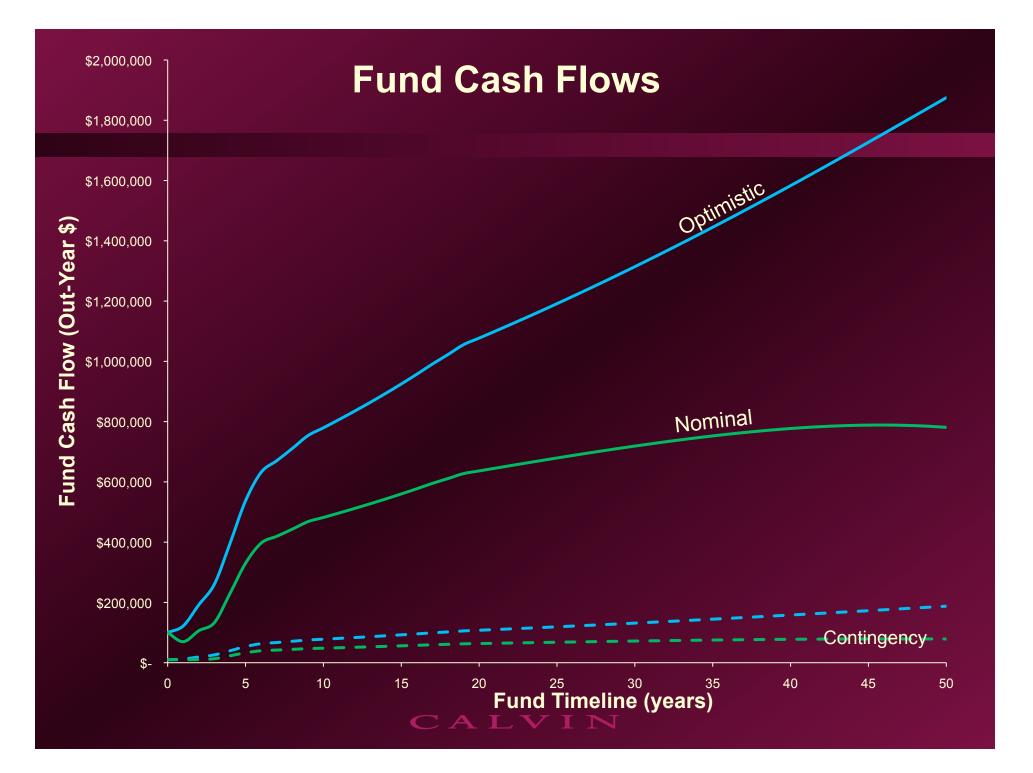
- Evaluated based on immediate installation
- Compared against an opportunity cost of capital of 6% (nominal case)
- Evaluated in out-year dollars
- Requested nominal, pessimistic, optimistic values to create multiple scenarios

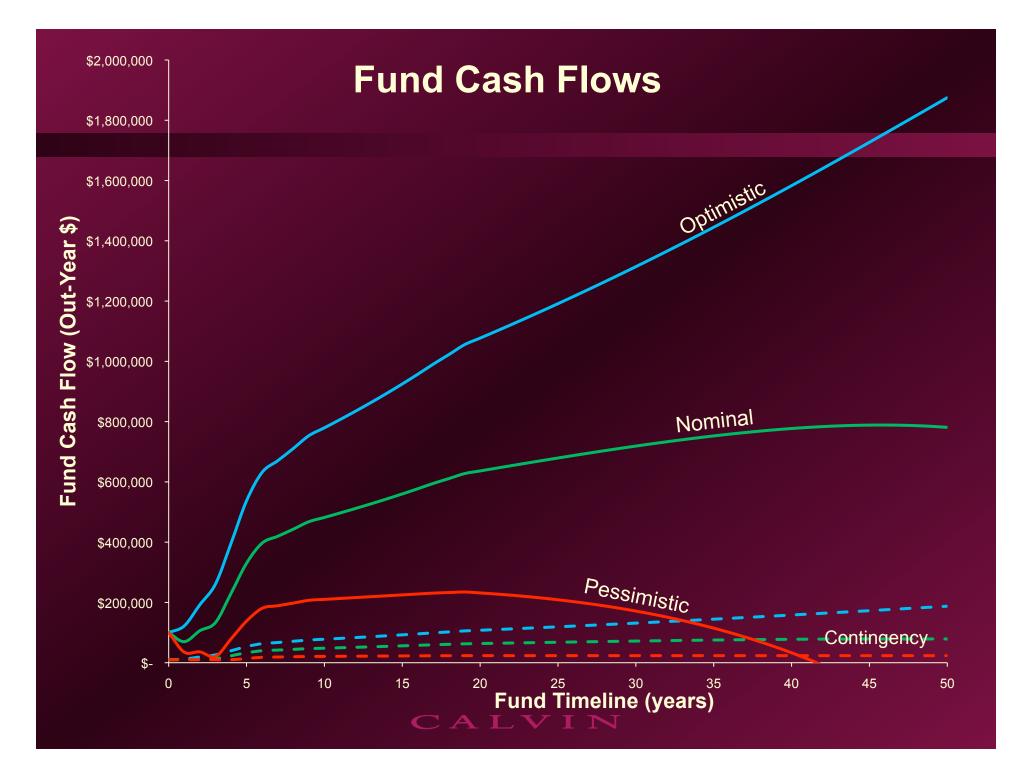
Project Payback Periods

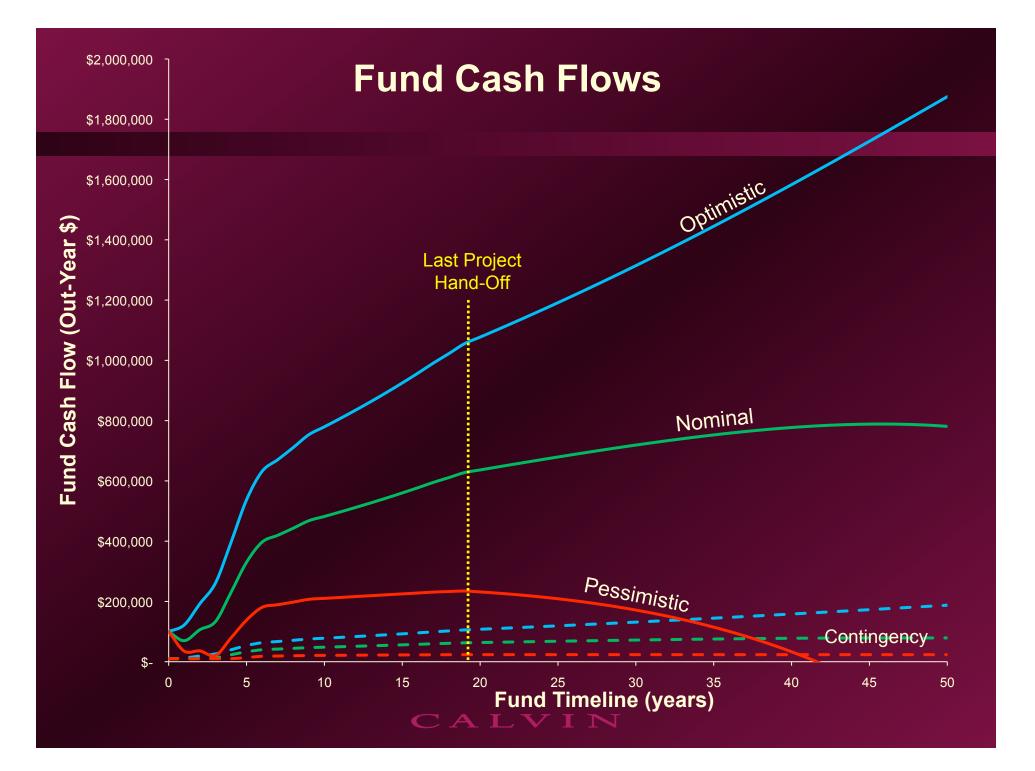
Project Implementation Dates

Financial Considerations

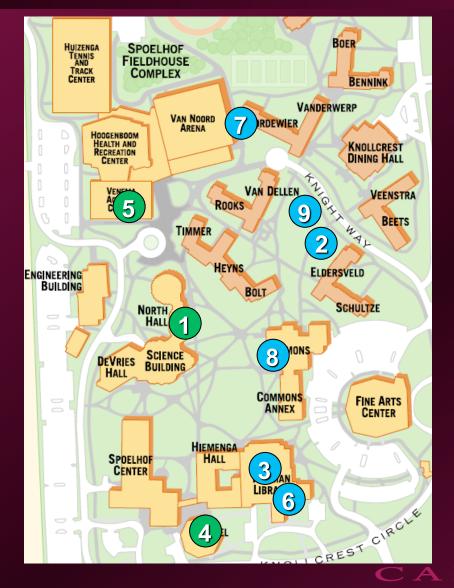

Intern Wages


- \$8/hr, 10-15 hr/week, 32 weeks/yr
- Upfront and ongoing costs projected on inflation only
 - 4.1% inflation (nominal)
 - Technological advances & scarcity issues not considered


Savings & costs balanced annually


Pessimistic & Optimistic Cases

	Pessimistic	Nominal	Optimistic	
Upfront Costs	High 1	Nominal -	Low 🗸	
Ongoing Costs	High 1	Nominal -	Low 👃	
Energy Savings	Low 🗸	Nominal -	High 1	
Energy Cost Projection	Low 🗸	Nominal -	High 1	
Opportunity Cost of Capital	High 1	Nominal -	Low 👃	
Inflation Rate	High 1	Nominal -	Low 👃	
Fund Investment	Low 🗸	Nominal -	High 1	
Intern Costs	High 1	Nominal -	Low 🗸	



Proposed CEEF Projects

Group

2

- **Motion Sensors** 3 **Light Harvesting**
- **Chapel Airlock** 4 Tech
 - 5 **Solar Water Heating**
 - 6 **Forced Computer Shutdown**
- 7 **Dorm Tunnel Tech** Group 8 **CDH Windows** 3
 - 9 **Dorm Hall Lights**

Conclusion

- Calvin Energy Efficiency Fund is feasible
- Opportunity for Calvin to save money
- Many other potential energy efficiency projects
- Further steps in creation care

What We Learned

- Coordination between Groups
- Communication with Resources
- Value of Deadlines
- Accountability
- Relationship between Engineering and Stewardship

Acknowledgements

- Henry DeVries
- Paul Pennock
- Don Winkle
- Chuck Holwerda
- Prof. Matt Heun

(VP of Finance)

(Physical Plant)

(Physical Plant)

(Electronics Shop)

(Professor of Engineering)

And Many Others

Questions

