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Our project is centered around the question of “how has the microbial
component to the Cephalotes ant holobiont system contributed to ant
evolution?” 117 different species of Cephalotes (turtle) ants are found in
neotropical areas, such as the Caribbean, American Southwest, and
South America. Cephalotes have a carbohydrate-rich and nitrogen-poor
diet, which is nutritionally problematic for the ant. In addition, Cephalotes
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| ’ Spectra consistently show
acetate consumption (peak
= retention time 2.45) and
possibly butyrate
production. Microbially-
produced SCFA’s are a
major energy source for
many iNnsects.

Figure 1. Maximum-likelihood 16S rRNA-based phylogenetic tree
of the Pseudomonadales isolates from ants used in this study.

The majority of Isolates group within the novel family
\Ventosamonadaceae, and suggest a high degree of co-
speciation with their ant host.




