Hind Limb Form and Function in Terrestrial and Semi-Aquatic Mammals: Insights into Locomotor Evolution in Early Cetaceans

Alexandra N. Kuipers and Ryan M. Bebej, PhD

Introduction

Cetaceans (which include modern whales, dolphins, and porpoises) are descendants of terrestrial mammals. The earliest known cetaceans (about 52.5 million years old) had some adaptions for aquatic life, but remained quadrupedal with the ability to locomote on land. As cetaceans became increasingly adapted for life in water, their swimming became more efficient and resulted in adaptations such as flattened tail flukes, as seen in modern cetaceans. This also required an impressive flukes, as seen in modern cetaceans. This also required an impressiamount of change in the hip and hind limb morphology of early cetaceans. While the earliest cetaceans had fully functional, stabilized hind The purpose of this study was to understand the evolutionary pathway carly cetaceans took as they transitioned from one type of aquatic loco early cetaceans took as they transitioned from one type of aquatic loco ed swimming) to another (i.e tail-powered swimming) through quantitative ming) through quantita and hind limb morphology of modern mammals.

Materials and Methods

Skeletal specimens of modern mammals and fossil cetaceans were assessed at the University of Michigan Museums of Zoology and Paleontology (Ann Arbor, MI), the National Museum of and Pareontology (Ann Arbor, MI), the Natoral Mistory (Washington, DC), and Northeast Ohio Medical University (Rootstown, OH). Linear measurements of major morphological landmarks on the innominata and femora were morphological landmarks on the innominata and femora were taken using digital calipers. Femoral head angles were quantified hrough digital photographs using Image J. The data were divided (PCAs) in the program R.

Conclusions

The results of the PCAs demonstrate
Derived protocetids, like Qaisracetus, Natchitochia, and Georgiacetus, actually have relatively longer ilia compared to more basal archaeocetes like Pakicetus and Maiace tus.

This is unlike the trend seen in other semi-aquatic mammals, in which the ilium shortens
The ilium is an attachment site for muscles such as the gluteal muscles, which aid in the extension of the hind limb. A change in the morphology of the ilium could signify a subsequent change in function of those muscles.

Derived protocetids generally exhibit a relatively open acetabular fossa, which may have implications for their hip mobility or weight-bearing capabilities
o Closed acetabular fossae are commonly found in stabilized hip joints (e.g., hippopotamus).
o Open acetabular fossae are found in very mobile hip joints (e.g., most pinn peds)

The femora of remingtonocetids appear more specialized than other archaeocetes Most remingtonocetids have small femoral head angles, but Remingtonocetus doman daensis has the widest femoral head angle of the fossil cetaceans
o Femoral heads that are more vertically oriented result in limbs that are more splayed, which increases mobility and can thus assist in more lateral movements of the limb.

- Femoral heads that are more horizontally oriented result in limbs that are brought in the parasagittal plane. This ultimately can increase propulsion force and reduce drag during swimming

Results
Innominate

Fig. 5 PC-II and PC-III of
semiaguatic species.

Acknowledgments

