Modeling Error in Equilibrium-Restricted Factor Analysis Nathanael Kazmierczak and Douglas A. Vander Griend, Ph.D., Department of Chemistry & Biochemistry, Calvin College #### Introduction - Factor analysis: a data mining technique that expresses a matrix as the product of two factor matrices. - Application: UV-vis spectrophotometric titrations of equilibrium metal-ligand and host-guest complexation systems. - Multiple error sources with non-normal distributions. - Error propagation poorly understood. - Technique often treated as a "black box." - Beer's law: $A = \varepsilon \times L \times c$ - Factor matrices obtained through constrained nonlinear least-squares optimization: # Diagnosing Error #### 1) Composition error - Source: balance imprecision, user error - Remedy: "Wiggle" stock solution concentration and addition volume. #### 2) Transmittance error - Source: spectrometer imprecision - Remedy: no method for elimination #### 3) Stoichiometry error - Source: user-defined equilibrium model - Remedy: search all possible stoichiometries with a computer. ## Simulating Error - 1. Artificial data: absorbance data sets obeying the laws of chemical equilibrium are generated from concentration and absorptivity factors *in silico*. - 2.Monte Carlo simulations: random error patterns of a given standard deviation are added to identical artificial data sets between 30 and 100 times and the model optimized for each. The calculated results form a distribution illustrating error bars. # Titration Anatomy Composition (starting chemicals) Equilibrates Spectrometer measures absorbance data Analyzed by Equilibrium model (user-defined) # Composition Error #### Transmittance Error # Stoichiometry Error ### 1:1 Exergonic Limits | [H] _o | Δ G ° lower bound (kJ/mol) at 298 K | K | K[H] _o | |--------------------|--|--------------------|-------------------| | 1×10^{-6} | -84 | 5×10^{14} | 5×10^{8} | | 1×10^{-5} | -79 | 7×10^{13} | 7×10^{8} | | 1×10^{-4} | -72 | 4×10^{12} | 4×10^8 | | 1×10^{-3} | -68 | 8×10^{11} | 8×10^{8} | | 1×10^{-2} | -62 | 7×10^{10} | 7×10^{8} | | 1×10^{-1} | -56 | 6×10^{9} | 7×10^{8} | | 1 | -51 | 8×10^{8} | 8×10^{8} | • 0.0003 transmittance error added (best-case spectrometer error) ### Conclusions - Monte Carlo adaptations of SivvuTM software allowed high-volume error studies. - Each type of error has a distinct signature. - Each type of error can be diagnosed separately. - Composition and transmittance error effects are amplified for highly exergonic reactions owing to a loss of model sensitivity to the ΔG° value. - There exists a smooth RMS minimum at the correct model stoichiometry, potentially allowing optimization to find the correct model. - For 1:1 reactions, there exists a fundamental lower bound to the ΔG° value that can be reliably calculated in the presence of spectrometer transmittance error. ### Acknowledgements - Calvin College - Arnold and Mabel Beckman Foundation - National Science Foundation