Modeling Error in Equilibrium-Restricted Factor Analysis

Nathanael Kazmierczak and Douglas A. Vander Griend, Ph.D., Department of Chemistry & Biochemistry, Calvin College

Introduction

- Factor analysis: a data mining technique that expresses a matrix as the product of two factor matrices.
- Application: UV-vis spectrophotometric titrations of equilibrium metal-ligand and host-guest complexation systems.
- Multiple error sources with non-normal distributions.
- Error propagation poorly understood.
- Technique often treated as a "black box."
- Beer's law: $A = \varepsilon \times L \times c$
- Factor matrices obtained through constrained nonlinear least-squares optimization:

Diagnosing Error

1) Composition error

- Source: balance imprecision, user error
- Remedy: "Wiggle" stock solution concentration and addition volume.

2) Transmittance error

- Source: spectrometer imprecision
- Remedy: no method for elimination

3) Stoichiometry error

- Source: user-defined equilibrium model
- Remedy: search all possible stoichiometries with a computer.

Simulating Error

- 1. Artificial data: absorbance data sets obeying the laws of chemical equilibrium are generated from concentration and absorptivity factors *in silico*.
- 2.Monte Carlo simulations: random error patterns of a given standard deviation are added to identical artificial data sets between 30 and 100 times and the model optimized for each. The calculated results form a distribution illustrating error bars.

Titration Anatomy

Composition (starting chemicals)

Equilibrates

Spectrometer measures absorbance data

Analyzed by

Equilibrium model (user-defined)

Composition Error

Transmittance Error

Stoichiometry Error

1:1 Exergonic Limits

[H] _o	Δ G ° lower bound (kJ/mol) at 298 K	K	K[H] _o
1×10^{-6}	-84	5×10^{14}	5×10^{8}
1×10^{-5}	-79	7×10^{13}	7×10^{8}
1×10^{-4}	-72	4×10^{12}	4×10^8
1×10^{-3}	-68	8×10^{11}	8×10^{8}
1×10^{-2}	-62	7×10^{10}	7×10^{8}
1×10^{-1}	-56	6×10^{9}	7×10^{8}
1	-51	8×10^{8}	8×10^{8}

• 0.0003 transmittance error added (best-case spectrometer error)

Conclusions

- Monte Carlo adaptations of SivvuTM software allowed high-volume error studies.
- Each type of error has a distinct signature.
- Each type of error can be diagnosed separately.
- Composition and transmittance error effects are amplified for highly exergonic reactions owing to a loss of model sensitivity to the ΔG° value.
- There exists a smooth RMS minimum at the correct model stoichiometry, potentially allowing optimization to find the correct model.
- For 1:1 reactions, there exists a fundamental lower bound to the ΔG° value that can be reliably calculated in the presence of spectrometer transmittance error.

Acknowledgements

- Calvin College
- Arnold and Mabel Beckman Foundation
- National Science Foundation

