Team 6 Reintroduction

Nathan Brinks Ben Moes Andy Gabler David van Geest
Outline

I. Project Introduction

II. The Solution
 I. Design Decisions
 II. Progress
 III. Catastrophe

III. The Alternative Solution
 I. Progress

IV. Conclusion

V. Acknowledgements

VI. Questions
Mechanical Stethoscopes
- Chestpiece: metal casing with diaphragm
- Earpiece: hollow tubing with spring

Electrical Stethoscopes
- Preserve look
- Bulky and Heavy
- IR data Transfer
An electronic stethoscope that will:
- Aid in auscultation
- Perform frequency filtering
- Record digital audio data from the patient
- Store the audio files on the device
- Transfer the audio files to a computer via USB
- Contain these features in a convenient media-player like form-factor
- Provide a wireless chestpiece
The Solution

Introduction

The Solution

Alternative Solution

Conclusion
Main Criteria:
- USB Device functionality
- DSP Functionality (Hardware Multiply)
- Power consumption
- Clock Speed
- RoHS compliance

Minor Considerations
- Available memory, removable media interface, GPIO, ADC, price, dev kit

Choice: Freescale MCF5275
Design Decision – Operating System

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Weight</th>
<th>uCLinux</th>
<th>No OS</th>
<th>FreeRTOS</th>
<th>eCos</th>
<th>GNU/Linux</th>
<th>Nucleus RTOS</th>
<th>uC/OS-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Cost</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Open Source</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Familiarity</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>OS Size</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Royalties</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Hardware Support</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>User Community</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Documentation</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Security</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Real-Time</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IDE Availability</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Multi-tasking</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Total:</td>
<td>691</td>
<td>554</td>
<td>563</td>
<td>555</td>
<td>478</td>
<td>600</td>
<td>615</td>
<td></td>
</tr>
</tbody>
</table>

Introduction

The Solution

Alternative Solution

Conclusion
Design Decision - Wireless

- Considerations
 - Range
 - Reliability
 - Development Time

- Choice: F2M03MLA:
 - Benefits:
 - Made for Streaming 16bit Audio
 - Small Efficient Package
 - Full FCC Qualification
 - Built in Firmware
 - Deterrents:
 - Cost
Design Decision – Chestpiece Power Supply

• **Choices:**
 • **Battery – Li-ion**
 • Greater energy density
 • More common
 • **Supercapacitor**
 • Higher risk - unique
 • Quicker charge time

• **Choice:**
 • **Two 10F 2.7 Volt supercapacitors in series**
 • Estimated Typical Runtime = 13 minutes at 22mA (observed current)
 • Estimated Minimum Runtime = 4 minutes at 75mA (datasheet max.)
Progress – Chestpiece Design
• Firmware in flash
• Bootloader is complete
• Breadboard prototyping
 • LCD functional
 • CODEC control functional
 • Bluetooth control functional, streaming non-functional
• Filter algorithms complete
• WAV encoding/decoding software complete
• Chestpiece prototype in testing
• I2C, SPI, UART, EPMOD drivers (mostly) complete
Catastrophe

• During debug, microprocessor board shorted out
• Board no longer boots
• Replacement board not available until May 15

Dramatization
The Alternative Solution

• Embedded platform emulated on PC running Ubuntu Linux and Qt graphics
• Beltpack is replaced by computer, chestpiece design unchanged
The Alternative Solution - Progress

- Wired audio streaming functional
- Digital filtering, recording, and playback complete
- Qt GUI design complete
- Wireless audio streaming non-functional
- Power supply testing complete
The Alternative Solution - Progress

Introduction

The Solution

Alternative Solution

Conclusion
• What we have learned
 • Deceptive marketing and poor product support are big problems
 • Device interfaces are very important
 • Open-source software is not always functional

• What we would do differently
 • Microprocessor selection
 • Add 5th team member – mechanical
 • Wireless design
Resources

• Francis Andries – Andries Auscultation
• Dr. Rob “The Bossman” Bossemeyer
• David Dunayczan – Freescale Semiconductor
• David Josephson – Josephson Engineering
• Dr. Srinivas Janardan – Grand River Gastroenterology
• uClinux-dev, uClinux-coldfire, uClinux.org, uCdot.org, CLUG, u-boot-users
• DornerWorks Embedded Systems Engineering
• CodeSourcery
• Prof. Randall Brouwer
• Prof. Steven VanderLeest
• Professor Joel Adams
• Kyle Schlansker
• Zach Luchies
• Matthew Fetke – Videon Central
• Liew Tsi Chung – Freescale Semiconductor
Rhythm Reloaded supports GNU Linux