[Rhythm Reloaded]
Team 6 Final Presentation
I. Project Introduction
II. The Solution
 I. Design Decisions
 II. Progress
 III. Catastrophe
III. The Alternative Solution
 I. Progress
IV. Conclusion
V. Acknowledgements
VI. Questions
Mechanical Stethoscopes

- Chestpiece: metal casing with diaphragm
- Earpiece: hollow tubing with spring
Electrical Stethoscopes

- Preserve look
- Bulky and Heavy
- Limited recording
- Slow data transfer
An electronic stethoscope that will:
- Aid in auscultation
- Perform frequency filtering
- Record digital audio data from the patient
- Store the audio files on the device
- Transfer the audio files to a computer via USB
- Contain these features in a convenient media-player like form-factor
- Provide a wireless chestpiece
Design Decision - Microprocessor

• Main Criteria:
 • USB Device functionality
 • DSP Functionality (Hardware Multiply)
 • Power consumption
 • Clock Speed
 • RoHS compliance

• Minor Considerations
 • Available memory, removable media interface, GPIO, ADC, price, dev kit

• Choice: Freescale MCF5275
Design Decision – Operating System

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Weight</th>
<th>uCLinux</th>
<th>No OS</th>
<th>FreeRTOS</th>
<th>eCos</th>
<th>GNU/Linux</th>
<th>Nucleus RTOS</th>
<th>uC/OS-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Cost</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Open Source</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Familiarity</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>OS Size</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Royalties</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Hardware Support</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>User Community</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Documentation</td>
<td>8</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Security</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Real-Time</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IDE Availability</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Multi-tasking</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Total:</td>
<td>691</td>
<td>554</td>
<td>563</td>
<td>555</td>
<td>478</td>
<td>600</td>
<td>615</td>
<td></td>
</tr>
</tbody>
</table>
Welcome to uClinux

For further information check: http://www.uclinux.org/

Execution Finished, Exiting

Sash command shell (version 1.1.1)
/> helloWorld
Hello World!

Welcome to Rhythm Reloaded's M5275EVB!
Design Decision - Wireless

• Considerations
 • Range & Reliability
 • Power Consumption & Bandwidth
 • Development Time

• Choice: F2M03MLA:
 • Benefits:
 • Made for Streaming 16bit Audio
 • Small Efficient Package
 • Full FCC Qualification
 • Built in Firmware
 • Deterrents:
 • Cost
Design Decision – Chestpiece Power Supply

• Choices:
 • Battery – Li-ion
 • Greater energy density
 • More common
 • Supercapacitor
 • Higher risk - unique
 • Quicker charge time

• Choice:
 • Two 10F 2.7 Volt supercapacitors in series
 • Estimated Typical Runtime = 13 minutes at 22mA (observed current)
 • Estimated Minimum Runtime = 4 minutes at 75mA (datasheet max.)
Progress – Chestpiece Design

[Diagram of a circuit board with labels and components]

Introduction

The Solution

Alternative Solution

Conclusion
Progress

- Firmware in flash
- Bootloader is complete
- Breadboard prototyping
 - LCD functional
 - CODEC control functional
 - Bluetooth control functional
 - Audio streaming non-functional
- Filter algorithms complete
- WAV encoding/decoding software complete
- Chestpiece prototype in testing
- I2C, SPI, UART, EPMOD drivers (mostly) complete

Introduction

The Solution

Alternative Solution

Conclusion
Catastrophe

- During debug, microprocessor board shorted out
- Board no longer boots
- Replacement board not available until May 15

Dramatization
The Alternative Solution

• Embedded platform emulated on PC running Ubuntu Linux and Qt graphics
• Beltpack is replaced by computer, chestpiece design unchanged
The Alternative Solution - Progress

- Wireless audio streaming functional
- Digital filtering, recording, and playback complete
- Qt GUI design complete
- Analog electronics complete
- Noise issues remain
The Alternative Solution - Progress

Introduction

The Solution

Alternative Solution

Conclusion
The Alternative Solution - Progress

```c
uint16_t *decodedData;

sampleCount = 0;
int decodedSampleCount = 0;

// Create the recording stream */
if (!((r = pa_simple_new(NULL, "audioLoop", PA_STREAM_RECORD, NULL, "record", &ss, NULL, NULL, &error)))) {
    fprintf(stderr, __FILE__": pa_simple_new() failed: %s\n", pa_strerror(error));
    return NULL;
}

// Create the playback stream
if (!((p = pa_simple_new(NULL, "audioLoop", PA_STREAM_PLAYBACK, NULL, "playback", &ss, NULL, NULL, &error)))) {
    fprintf(stderr, __FILE__": pa_simple_new() failed: %s\n", pa_strerror(error));
    return NULL;
}

// this is essentially a state machine, but progression from one state to another is instigated by a change in
// the global state variables which are set by the GUI thread
while (!powerDown) {
    switch (myState) {
    case listenState:
    case deleteState:
        if (streamAudio(r, p, buf, sizeof(buf), NULL) != 0) {
            fprintf(stderr, __FILE__": streamAudio failed with PA error code: %s\n", pa_strerror(error));
        }
        break;
    case recordState:
        switch (myRecorderState) {
    case Record_PreRecordState:
    case Record_FileEnterState:
        // stream like normal until user chooses a filename
        if (streamAudio(r, p, buf, sizeof(buf), NULL) != 0) {
            fprintf(stderr, __FILE__": streamAudio failed with PA error code: %s\n", pa_strerror(error));
        }
        break;
    case Record_RecordingState:

```
• What we have learned
 • Burritos are the 7th food group
 • Misleading marketing and poor product support are big problems
 • Device interfaces are very important
 • Open-source software is not always functional

• What we would do differently
 • Microprocessor selection
 • Add 5th team member – mechanical
 • Wireless design
Acknowledgements

- Francis Andries – Andries Auscultation
- Dr. Rob “The Bossman” Bossemeyer
- David Dunayczan – Freescale Semiconductor
- David Josephson – Josephson Engineering
- Dr. Srinivas Janardan – Grand River Gastroenterology
- uClinux-dev, uClinux-coldfire, uClinux.org, uCdot.org, CLUG, u-boot-users
- DornerWorks Embedded Systems Engineering
- CodeSourcery
- Prof. Randall Brouwer
- Prof. Steven VanderLeest
- Professor Joel Adams
- Kyle Schlansker
- Zach Luchies
- Matthew Fetke – Videon Central
- Liew Tsi Chung – Freescale Semiconductor
Questions?

Rhythm Reloaded supports GNU/Linux