Team 9

In The Spotlight

Automatic Tracking LED Spotlight System
Team Members

Kevin Vu (ECE), Jake Roorda (ECE), Phillip Fynan (ECE), Lucas tenBrink (ECE)
Outline

❖ Introduction
❖ Our Solution
❖ Design
 ➢ Optics
 ➢ Graphical User Interface
 ➢ Actuation
 ➢ Tracking
❖ Budget
❖ Deliverables
❖ Conclusion
Existing Spotlights

- Labor Intensive
- Hazardous Working Conditions
 - Heights
 - Extreme Heat
 - Loud Sounds
- Lack of Central Control
Our Solution

- LED Spotlight
Our Solution

- LED Spotlight
- Robotic Light Actuation
Our Solution

- LED Spotlight
- Robotic Light Actuation
Our Solution

- LED Spotlight
- Robotic Light Actuation
- Actor Sensing
Our Solution

- LED Spotlight
- Robotic Light Actuation
- Actor Sensing
- Tracking
Our Solution

- LED Spotlight
- Robotic Light Actuation
- Actor Sensing
- Tracking
- User Interface
Our Solution

- LED Spotlight
- Robotic Light Actuation
- Actor Sensing
- Tracking
- User Interface
Optics

- Design Alternatives
 - Elliptical
 - Parabolic (PAR can)
 - Parabolic (focused)

http://upload.wikimedia.org/wikipedia/en/2/2d/Followspotoptics.JPG

http://www.fas.harvard.edu/~loebinfo/loebinfo/lighting/PAR.gif
Optics

- Design Choice
 - Parabolic Reflector (7.5° beam angle)
 - Lens-less
 - Custom Grid Attachment
Lighting

- Chip-On-Board LED array
 - 80 kW (1kW typical for incandescent)
 - 9000-10000 lumen output
 - 3500K Color Temperature

http://media.digikey.com/Photos/Bridgelux/MFG_Vero%2029.jpg

http://media.simplyled.co.uk/media/catalog/product/cache/1/image/410x/9df78eab33525d08d6e5fb8d27136e95/g/u/gu10-5w-ww-60o-front-lower-res_2.jpg
Thermal Management

- 75% of LED power used
- Synthetic jet and heatsink
 - Thermal Wattage = 82W
 - Resistance = 0.49 C/W
- Max temperature recorded at 81 C

Lighting Control

- LED driver module
- RedBoard controller
- Overheat protection
- Actuation passed commands

GUI Design

❖ QT Libraries (C++ Based)
 ➢ Widely Used
 ➢ Developer-Friendly

❖ Options
 ➢ Live View Of Stage
 ➢ Actuation Control
 ➢ Lighting Intensity Control
 ➢ Tracking Mode
 ➢ Manual
 ➢ Automatic
GUI Design
GUI Design

- Communication
 - Apache Thrift
 - Client: GUI Software
 - Server: Tracking Software
Actuation Design

❖ Mirror Pointing or Direct Pointing
❖ Mirror Driven by Combination Belt-Gear Drives
Actuation Design

- Mirror Pointing or Direct Pointing
- Mirror Driven by Combination Belt-Gear Drives
Actuation Design

- Encoders Measure Motor Position
- Gearing to Gain Encoder Resolution
Actuation Design

- Custom Pan Control Board

- Microcontroller (ATMEGA 328P)
- Motor Driver (TI DRV8313)
- Ethernet Module
- 12V -> 6V, 5V Regulators
- Encoder Input
- E-Stop Connection
- 1/8” Headphone Connector
Actuation Design

- Custom Tilt Control Board
 - Microcontroller (ATMEGA 328P)
 - Motor Controller
 - 6V->5V Switching Regulator
 - Encoder Input
 - 1/8” Headphone Connector
Tracking Design

❖ Near-Infrared Beacon
➢ Near-Infrared LED
➢ Small Size
➢ Constant Current LED Driver
➢ Battery Status Monitoring
Tracking Design

❖ Near-Infrared Beacon
 ➢ Near-Infrared LED
 ➢ Small Size
 ➢ Constant Current LED Driver
 ➢ Battery Status Monitoring
Tracking Design

❖ Near-Infrared Beacon
 ➢ Near-Infrared LED
 ➢ Small Size
 ➢ Constant Current LED Driver
 ➢ Battery Status Monitoring
Tracking Design

- Hardware
 - General Purpose PC

- Software
 - Written in C++
 - OpenCV
Tracking Design

- Feature Extraction
 - Brightness
 - Shape
 - Size
 - Expected Position
 - Expected Blink Pattern

- Tracking
 - Kalman Filter

- Resulting Estimates
 - Location and Velocity
 - Target Present
Team Operating Budget

- $775 Approved Budget
- $780.77 Actual Spending
- Highest Cost Components: LED and Driver

Original Budget

Actual Budget
Deliverables

- Final Spotlight System
- User Manual
- Final Design Report
- Mechanical and Electrical Schematics
- Code
- Final Website
Lessons Learned

❖ Better Group Accountability and Time Management
❖ Mirror Pointing Paradox
 ➢ Mirror Pointing Chosen for Smaller Moving System
 ➢ Lack of Lenses Shrinks Spotlight, Expands Mirror
 ➢ Mirror Pointing Now has the Larger Moving System
Acknowledgements

❖ Steve Haase (CTC)
❖ Doug Huizenga (OCCE)

❖ Phil Jaspers (Calvin College)
❖ Bob DeKraker (Calvin College)
❖ Chuck Holwerda (Calvin College)
❖ Prof. Steve VanderLeest (Calvin College)

❖ Tim Theriault (GE Aviation Systems)

❖ Texas Instruments for Sampled Parts
Questions