Team 9

In The Spotlight

Automatic Tracking LED Spotlight System
Team Members

Kevin Vu (ECE), Jake Roorda (ECE), Phillip Fynan (ECE), Lucas tenBrink (ECE)
Outline

❖ Introduction
❖ Deliverables
❖ System Design
❖ Subsystems
 ➢ Lighting
 ➢ Actuation
 ➢ Sensing
 ➢ Tracking
 ➢ User Interface
❖ Conclusion
Current Problems

❖ Current Spotlights are Labor Intensive
 ➢ Individual Spotlight Operators
 ➢ Occupational Hazards Include
 ➢ Heights
 ➢ Burns
 ➢ Hearing Loss
❖ Difficult to Use After Blackout
❖ Difficult to Coordinate

Outline

❖ Introduction
❖ Deliverables
❖ System Design
❖ Subsystems
 ➢ Lighting
 ➢ Actuation
 ➢ Sensing
 ➢ Tracking
 ➢ User Interface
❖ Conclusion
Our Solution - Deliverables

- Simplified LED Spotlight
- Automated Light Actuation
- Actor Sensing
- Automated Tracking
- Graphical User Interface
Outline

❖ Introduction
❖ Deliverables
❖ System Design
❖ Subsystems
 ➢ Lighting
 ➢ Actuation
 ➢ Sensing
 ➢ Tracking
 ➢ User Interface
❖ Conclusion
System Design

- Physically Separated Sensing, Control, Tracking, Actuation, and Lighting Units
- PC Based User Interface and Tracking
- Ethernet Communication
 - Long Distances (>100ft)
 - Video and Bi-direction Commands
 - Existing Wiring Infrastructure
Outline

❖ Introduction
❖ Deliverables
❖ System Design
❖ Subsystems
 ➢ Lighting
 ➢ Actuation
 ➢ Sensing
 ➢ Tracking
 ➢ User Interface
❖ Conclusion
Lighting

❖ Light Source
 ➢ Chip on board LED array

❖ Thermal Management
 ➢ Hybrid cooling
 ➢ Temperature sensor

❖ Dimming
 ➢ PWM

Actuation

❖ Primary Requirements
 ➢ < 30 dB Noise When Moving
 ➢ Required Pan and Tilt Angles

❖ Primary Design Alternatives
 ➢ Direct Pointing
 ➢ Full Range of Pointing Angles
 ➢ Slower and Louder
 ➢ Mirror Pointing
 ➢ Faster and Quieter
 ➢ Limited Pointing Angles

❖ Motor Considerations
 ➢ Brushless DC Pan Motor
 ➢ Brushed DC Tilt Motor

http://www.fullcompass.com/common/products/original/107956.jpg

Sensing

❖ Ideal
 ➢ Dual camera system
 • Near-Infrared camera
 • Visual camera
 ➢ Near-Infrared Beacons
 ➢ High Frame Rate and High Resolution Cameras

❖ Prototype
 ➢ Possibly One Camera: Visual camera with the IR filter removed
 ➢ 25-40 Frames Per Second
 ➢ 480p-720p Resolution
 ➢ Possible Second Visual Camera if a Visible Light Filter is Used

http://www.vividlight.com/29/images/Spectrum%20of%20Light.jpg
Sensing Demonstration

❖ Early Prototype
 ➢ Variable Speed Flashing Prototype
 ➢ 850nm and 950nm 120° LEDs

❖ Future Improvements
 ➢ Improved Camera Control
 ➢ Video Frequency Filtering and Background Subtraction
Control

- **PC User Interface**
 - Clickable View of Stage
 - Tracking Selection
 - Light Parameter Adjustment

- **DMX Integration with Existing Lighting Boards**

- **Custom DMX Control Board (Stretch Goal)**

[Link](http://static.musiciansfriend.com/derivates/6/001/208/512/DV019_Jpg_R331775.jpg)
Outline

❖ Introduction
❖ Deliverables
❖ System Design
❖ Subsystems
 ➢ Lighting
 ➢ Actuation
 ➢ Sensing
 ➢ Tracking
 ➢ User Interface
❖ Conclusion
Conclusion – Focus Areas

- Tracking System
 - Camera Selection
 - Tracking Algorithm Development

- User Control System
 - User Interface Development
 - Communications

- Simplified LED Spotlight
 - Part Selection

- Light Actuation System
 - Physical Design and Mockups
Questions?