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Abstract. There is a canonical homomorphism ψ : π1(bdyX)→
π∞1 (X) from the fundamental group of the visual boundary, here
denoted by bdy X, of any non-positively curved geodesic space X
into its fundamental group at infinity. In this setting, the latter
group coincides with the first shape homotopy group of the visual
boundary: π∞1 (X) ≡ π̌1(bdy X). The induced homomorphism ϕ :
π1(bdy X)→ π̌1(bdy X) provides a way to study the relationship
between these groups.

We present a class Z of compacta, so-called trees of manifolds,
for which we can show that the homomorphisms ϕ : π1(Z)→ π̌1(Z)
(Z ∈ Z) are injective. This class Z includes the visual boundaries
Z = bdy X which arise from right-angled Coxeter groups whose
nerves are closed PL-manifolds. In particular, it includes the visual
boundaries of those Coxeter groups which act on Davis’ exotic open
contractible manifolds [2].

1. The first shape homotopy group of a metric compactum
We recall the definition of the first shape homotopy group of a pointed
compact metric space (Z, z0). Choose an inverse sequence

(Z1, z1)
f2,1←− (Z2, z2)

f3,2←− (Z3, z3)
f4,3←− · · ·

of pointed compact polyhedra such that

(Z, z0) = lim
←−

((Zi, zi), fi+1,i).

The first shape homotopy group of Z based at z0 is then given by

π̌1(Z, z0) = lim
←−

(
π1(Z1, z1)

f2,1#←− π1(Z2, z2)
f3,2#←− π1(Z3, z3)

f4,3#←− · · ·
)
.

This definition of π̌1(Z, z0) does not depend on the choice of the se-
quence
((Zi, zi), fi+1,i) [8]. Let pi : (Z, z0) → (Zi, zi) be the projections of
the limit (Z, z0) into its inverse sequence ((Zi, zi), fi+1,i) such that
pi = fi+1,i ◦ pi+1 for all i. Since the maps pi induce homomorphisms

Research of the first author supported in part by the Faculty Internal Grants
Program of Ball State University.

Research of the second author supported in part by NSF Grant DMS-0072786.
39



40 HANSPETER FISCHER AND CRAIG R. GUILBAULT

pi# : π1(Z, z0)→ π1(Zi, zi) such that pi# = fi+1,i# ◦ pi+1# for all i, we
obtain an induced homomorphism ϕ : π1(Z, z0) → π̌1(Z, z0) given by
ϕ([α]) = ([α1], [α2], [α3], · · · ), where αi = pi ◦ α.

The following examples illustrate that ϕ : π1(Z, z0)→ π̌1(Z, z0) need
not be injective and is typically not surjective.

Example 1. Let

Y = {(x, y, z) ∈ R3 | z = 0, 0 < x ≤ 1, y = sin 1/x}∪({0}×[−1, 1]×{0})
be the “topologist’s sine curve”. Define Yi = Y ∪([0, 1/i]×[−1, 1]×{0}).
Let Z and Zi be the subsets of R3 obtained by revolving Y and Yi about
the y-axis, respectively, and let fi+1,i : Zi+1 ↪→ Zi be inclusion. Then
Z is the limit of the inverse sequence (Zi, fi+1,i). If we take z0 =
(1, sin 1, 0), then π1(Z, z0) is infinite cyclic, while π̌1(Z, z0) is trivial.

Example 2. We can make the space Z of the previous example path
connected, by taking any arc a ⊆ R3, such that a ∩ Z = ∂a =
{z0, (0, 1, 0)}, and then considering Z+ = Z ∪ a. Notice that both
π1(Z

+, z0) and π̌1(Z
+, z0) are infinite cyclic. However, the homomor-

phism ϕ : π1(Z
+, z0)→ π̌1(Z

+, z0) is trivial.

Example 3. Let Z =
⋃∞

k=1Ck be the Hawaiian Earrings, where

Ck = {(x, y) ∈ R2 | x2 + (y − 1/k)2 = (1/k)2}.
Put Zi = C1∪C2∪· · ·∪Ci and let z0 = zi = (0, 0). Define fi+1,i : Zi+1 →
Zi by fi+1,i(p) = (0, 0) for p ∈ Ci+1 and fi+1,i(p) = p for p ∈ Zi+1\Ci+1.
Then (Z, z0) is the limit of the inverse sequence ((Zi, zi), fi+1,i). While
this time ϕ : π1(Z, z0) → π̌1(Z, z0) is injective [4], it is not surjective:
let li : (S1, ∗) → (Ci, z0) be a fixed homeomorphism and consider for
each i the element

gi = [l1][l1][l1]
−1[l1]

−1[l1][l2][l1]
−1[l2]

−1[l1][l3][l1]
−1[l3]

−1 · · · [l1][li][l1]−1[li]
−1

of π1(Zi, zi). Then the sequence (gi)i is an element of the group π̌1(Z, z0)
which is clearly not in the image of ϕ.

2. Trees of manifolds
We shall call a topological space Z a tree of manifolds if there is an
inverse sequence

M1
f2,1←−M2

f3,2←−M3
f4,3←− · · · ,

called a defining sequence for Z, of distinct closed PL-manifolds Mn

with collared disksDn ⊆Mn, and continuous functions fn+1,n : Mn+1 →
Mn that have the following properties:

(P-1) Z = lim
←−

(
M1

f2,1←−M2
f3,2←−M3

f4,3←− · · ·
)

;
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(P-2) For each n, the restriction of fn+1,n to the set f−1
n+1,n(Mn \

int Dn), call it hn+1,n, is a homeomorphism onto Mn \ int Dn,
and h−1

n+1,n(∂Dn) is bicollared in Mn+1;

(P-3) For each n, lim
m→∞

diam [fm,n(Dm)] = 0 ,

where fm,n = fn+1,n ◦ fn+2,n+1 ◦ · · · ◦ fm,m−1 : Mm → Mn &
fn,n = idMn .

(P-4) For each pair n < m, fm,n(Dm) ∩ ∂Dn = ∅.

M1 M2 M3 M4

f
2,1

f
3,2

f
4,3 f

5,4

D
1

D
2

D
3

D
4

Figure 1. A tree of manifolds

It follows that, for m ≥ n+ 2, the set

Em,n = int Dn∪fn+1,n(int Dn+1)∪fn+2,n(int Dn+2)∪· · ·∪fm−1,n(int Dm−1)

can be written as the union of m − n, or fewer, open disks in Mn

and that fm,n restricted to f−1
m,n(Mn \ Em,n) is a homeomorphism onto

Mn \ Em,n, which we will denote by hm,n. Moreover, if for n < m we
define the spheres Sm,n = h−1

m,n(∂Dn) ⊆Mm, we see that the collection
Sn = {Sn,1, Sn,2, · · · , Sn,n−1} decomposes Mn into a connected sum

Mn = [Nn,1#Nn,2# · · ·#Nn,n−1]#Nn,n ≈Mn−1#Nn,n.

Hence, Z can be thought of as the limit of a growing tree of connected
sums of closed manifolds. In particular, in dimensions greater than
two, we have

π1(Mn) = π1(Nn,1) ∗ π1(Nn,2) ∗ · · · ∗ π1(Nn,n−1) ∗ π1(Nn,n);

and in dimension two, we have

π1(Mn) = Fn,1 ∗π1(Sn,1) Fn,2 ∗π1(Sn,2) · · · ∗π1(Sn,n−2) Fn,n−1 ∗π1(Sn,n−1) Fn,n,

where Fn,i denotes the free fundamental group of the appropriately
punctured Nn,i.

Note also that each Sn,i ≈ ∂Di naturally embeds in Z.

Definition. We will call a defining sequence M1
f2,1←− M2

f3,2←− M3
f4,3←−

· · · well-balanced if the set
⋃

m≥3Em,1 either has finitely many compo-

nents or is dense in M1, and if for each n ≥ 2, the set h−1
n,n−1(Mn−1 \
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Dn−1)∪
[ ⋃

m≥n+2Em,n

]
either has finitely many components or is dense

in Mn.

Whether Z has a well-balanced defining sequence or not, will play a
role only in the case when the manifolds Mn are 2-dimensional closed
surfaces. Specifically, our main result is the following

Theorem. Suppose Z is a tree of manifolds, and z0 ∈ Z. In case Z is
2-dimensional, suppose further that Z admits a well-balanced defining
sequence. Then the canonical homomorphism ϕ : π1(Z, z0)→ π̌1(Z, z0)
is injective.

Remark. In case π1(Nn,n) 6= 1 for infinitely many n, an argument
analogous to Example 3 shows that ϕ : π1(Z, z0) → π̌1(Z, z0) is not
surjective.

For a detailed proof of this theorem see [6]. Here, we only give a
brief

SKETCH OF PROOF. Since it is known that the canonical homo-
morphism
π1(Y ) → π̌1(Y ) is injective for all 1-dimensional compacta Y [4], we
will assume that dim Z ≥ 2.

Let α : S1 → Z be a loop such that αn = pn ◦ α : S1 → Mn

is nullhomotopic for each n. We wish to show that α : S1 → Z is
nullhomotopic. We will do this by constructing a map β : D2 → Z
with β|S1 = α. By assumption, we may choose maps βn : D2 → Mn

with βn|S1 = αn. The difficulty of the proof, of course, is that in general
βn 6= fn+1,n ◦βn+1, so that the sequence (βn)n does not even constitute
a function D2 → Z into the inverse limit, let alone a map extending α.

Although we might not be in a position to move the maps αn the
slightest bit, we can place βn in general position with respect to the
spheres of the collection Sn while having βn|S1 approximate αn with
increasing accuracy as n increases. Indeed, we can arrange for each
cancellation pattern β−1

n (
⋃
Sn) to consist of finitely many pairwise dis-

joint straight line segments in D2 which have their endpoints in S1.
Ideally, we would like to paste together our map β from appropriate
pieces belonging to the maps of the sequence (βn)n, namely those pieces
that cancel the elements of π1(Nn,n). However, these cancellation pat-
terns will in general not be compatible. For example, in dimensions
greater than two, the cancellation pattern for an element

[αn+1] = h1∗k1∗h2∗k2∗· · ·∗h5∗k5 = 1 ∈ π1(Mn+1) = π1(Mn)∗π1(Nn+1,n+1)
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might be witnessed by βn+1 as

(h1(k1(h2(k2)h3)k3(h4)k4)h5(k5)) = 1.

The induced cancellation pattern for

[αn] = fn+1,n#([αn+1]) = h1∗1∗h2∗1∗· · ·∗1∗h5∗1 = 1 ∈ π1(Mn)∗{1}
as obtained from fn+1,n ◦ βn+1 would then be given by

(h1((h2h3)(h4))h5) = 1.

On the other hand, the map βn might cancel [αn] as

((h1h2)(h3(h4)h5)) = 1.

This is illustrated in Figure 2, which depicts the sets β−1
n (∂Dn), (fn+1,n◦

βn+1)
−1(∂Dn), and β−1

n+1(Sn+1,n) as dashed lines.
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Figure 2.

If k1 is not trivial and if k3 does not cancel k4 in π1(Nn+1,n+1), then
we cannot use any of the pieces of the map βn to construct β.

As a remedy, we repeatedly select subsequences until, at least ap-
proximately, all cancellation patterns are coherent. That is, until the
sets β−1

n (
⋃
Sn) are approximately nested with increasing n. Once this

is achieved, the union of these cancellation patterns produce a limit-
ing pattern P of possibly infinitely many straight line segments in D2

whose interiors are pairwise disjoint and whose endpoints lie in S1.
Each segment of P , at least approximately, maps under some βn into
some Sn,i. Note that we must allow for the possibility that αn meets
some Sn,i in infinitely many points. This effect is accounted for by a
possible increase of segments c ⊆ β−1

m (
⋃
Sm) for which βm(c) ⊆ Sm,i,

as m increases. The map β : D2 → Z can now be defined in two stages.
First, extend α : S1 → Z to a map β : S1 ∪ P → Z. If dim Z = 2,

this can be done so that each segment of P maps to a local geodesic
of that simple closed curve of Z which corresponds to the appropriate
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∂Di. If dim Z ≥ 3, any coherent extension into the spheres of Z
corresponding to ∂Di will do, so long as the extension to a segment
does not deviate too much from the image of its endpoints. If all this
is done with sufficient care, the map β : S1 ∪P → Z will be uniformly
continuous, so that we can extend it to the closure of its domain.

Next, focus on the components of the subset of D2 on which the
map β is not yet defined. Call these components holes. The boundary,
bdy H, of a hole H is a simple closed curve, which either maps to a
singleton under β, in which case we extend β trivially over cl H, or
pn ◦ β(bdy H) ⊆ N∗n for some n, where

N∗1 = M1 \
( ⋃

m≥3

Em,1

)
and

N∗n = Mn \
[
h−1

n,n−1(Mn−1 \Dn−1) ∪
( ⋃

m≥n+2

Em,n

)]
for n ≥ 2.

The map pn ◦ β : bdy H → N∗n ⊆ Mn can be extended to a map
pn ◦β : cl H →Mn so long as the hole H is sufficiently “thin”, because
Mn is an ANR. For the moment, assume that dim Z ≥ 3. The map
pn ◦ β : cl H → Mn can then be cut off at Sn,n−1 = h−1

n,n−1(∂Dn−1)
and pushed off

⋃
m≥n+2Em,n. Hence, we may extend the map pn ◦ β :

bdy H → N∗n to a map pn ◦β : cl H → N∗n. Since N∗n naturally embeds
in Z, we have an extension of β : bdy H → Z to β : cl H → Z. For
each n, there will be finitely many maps pn ◦ β : bdy H → N∗n ⊆ Mn

for which the hole H is not thin enough to make this argument. In
those cases, some fm,n ◦ βm : D2 → Mn, with sufficiently large m, will
be witness to the fact that pn ◦ β : bdy H → Mn is nullhomotopic
after all. This is due to the approximate nestedness of the cancellation
patterns β−1

n (
⋃
Sn). Since for sufficiently large n the subset of Z which

is homeomorphic to N∗n is arbitrarily small, this procedure guarantees
continuity of the resulting map β : D2 → Z.

If dim Z = 2, the above process requires a little bit more care and
is helped by the assumption that the defining tree is well-balanced.
Specifically, the sets N∗n will either be ANRs or 1-dimensional. In the
former case, we can adapt the argument we just made, and in the latter
case, we make use of the result in [4] mentioned at the beginning of
this proof. �

3. An application to Coxeter group boundaries
We now present an application of our theorem to boundaries of certain
non-positively curved geodesic spaces. Recall that a metric space is
proper if all of its closed metric balls are compact. A geodesic space is a
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metric space in which any two points lie in a geodesic, i.e. a subset that
is isometric to an interval of the real line in its usual metric. A proper
geodesic space X is said to be non-positively curved if any two points
on the sides of a geodesic triangle in X are no further apart than their
corresponding points on a reference triangle in Euclidean 2-space. The
visual boundary of a non-positively curved geodesic space X, denoted
by bdy X, is defined to be the set of all geodesic rays emanating from
a fixed point x0 endowed with the compact open topology. Let some
geodesic base-ray ω : [0,∞)→ X with ω(0) = x0 be given. Under the
relatively mild assumption that the pointed concentric metric spheres
(Sx0(i), ω(i)) have the pointed homotopy type of ANRs, it is shown in
[1], that

π̌1(bdy X,ω) = π∞1 (X,ω).

Here, π∞1 (X,ω) is the fundamental group at infinity of X, that is, the
limit of the sequence

π1(X \B(1), ω(2))← π1(X \B(2), ω(3))← π1(X \B(3), ω(4))← · · ·
whose bonds are induced by inclusion followed by a base point slide
along ω.

A class of visual boundaries to which our theorem applies, arises
from non-positively curved simplicial complexes, which are acted upon
by certain Coxeter groups, whose definition we now briefly recall: let
V be a finite set and m : V × V → {∞} ∪ {1, 2, 3, · · · } a function
with the property that m(u, v) = 1 if and only if u = v, and m(u, v) =
m(v, u) for all u, v ∈ V . Then the group Γ =

〈
V | (uv)m(u,v) = 1 for

all u, v ∈ V 〉 defined in terms of generators and relations is called a
Coxeter group. If moreover m(u, v) ∈ {∞, 1, 2} for all u, v ∈ V , then
Γ is called right-angled. The abstract simplicial complex N(Γ, V ) =
{∅ 6= S ⊆ V | S generates a finite subgroup of Γ} is called the nerve of
the group Γ. For a right-angled Coxeter group, the isomorphism type
of the nerve N(Γ, V ) = N(Γ) does not depend on the Coxeter system
(Γ, V ) but only on the group Γ [10].

For the remainder of this discussion, let Γ be a right-angled Coxeter
group whose nerve N(Γ) is a closed PL-manifold. This includes, for
example, the Coxeter groups generated by the reflections of any one
of Davis’ exotic open contractible n-manifolds (n ≥ 4), for which the
nerves are PL-homology spheres [2].

As described, for example, in [3], Γ acts properly discontinuously
on a non-positively curved (and hence contractible) simplicial complex
X(Γ), its so-called Davis-Vinberg complex, by isometry and with com-
pact quotient. In [5] it is shown that the visual boundary of X(Γ) is
a (well-balanced) tree of manifolds. (By virtue of [11], the proof given
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in [5] also applies to the non-orientable case.) The visual boundary
of X(Γ) is usually referred to as the boundary of Γ and is denoted by
bdy Γ. Since Coxeter groups are semi-stable at infinity [9] and Γ is
one-ended, π∞1 (X(Γ), ω) = π∞1 (Γ) is actually an invariant of the group
Γ [7].

In summary, we obtain the following

Corollary. Let Γ be a right-angled Coxeter group whose nerve N(Γ) is
a closed PL-manifold. Then the canonical homomorphism ψ : π1(bdy Γ)→
π∞1 (Γ) is injective.
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