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Introduction. By definition a space-time is a smooth four-dimensional
manifold X admitting a Lorentzian metric g whose curvature tensors
satisfy the Einstein field equations for some “reasonable” distribution
of matter and energy.

On the other hand, the singularity theorems of Penrose and Hawk-
ing [8] assert that any such space-time must contain singular points.
In other words, it can’t be a smooth manifold with metric g defined at
every point.

I suppose that the logical conclusion is that the universe cannot exist.
Yet somehow God was able to overcome this difficulty [5]. Can we?

The best-publicized attempt is due to Hawking and Hartle [7]. The
Hawking-Hartle “no boundary” theory has been popularized as a the-
ory of “imaginary time.” A better description of the geometry of the
model is given by saying that in a small neighborhood of the “big bang”
the metric changes signature, becoming positive definite locally. The
physical interpretation is that at the moment of creation none of the
four directions in space-time had yet been distinguished as “time.”

The original model for this construction was the closed positively
curved model characterized physically by the condition that the total
mass-energy content of the cosmos is greater than the “critical value”
(Ω > 1). Although the no boundary concept has been extended to
the flat and negatively curved standard models now favored by extra-
galactic observations [9], the positively curved model remains the most
successful in revealing the geometry of space-time near the big bang
singularity.

The reason for this is clear. In the standard closed model the space-
like cross sections (all of space at a particular moment in time) are
three-spheres. The entirety of space-time up to the present is viewed
as an expanding family of such spheres originating in a “sphere of radius
zero” at the moment of creation. Topologically, that is to say, the his-
tory of the cosmos so far is the cone on S3. Since the cone on S3 is just
the ordinary four-disc, topologically there is nothing to distinguish the
moment of the big bang from any other point of space-time. Thus the
singularity at the beginning of time, whose existence is guaranteed by
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the Penrose-Hawking theorems, is “merely” geometrical and physical,
not topological. Curvature tensors associated with the metric diverge
to infinity, as does the mass-energy density. But the background struc-
ture of space-time maintains its integrity as a topological manifold even
at the singular point.

Alas, the real world intrudes into our theorizing. Beginning in 1998
data from deep space studies using space-based telescopes and large ar-
ray imaging techniques have effectively ruled out the positively curved
model in favor of negatively curved models and (most popular cur-
rently) flat models with substantial cosmological constant (dark en-
ergy) [15]. At the same time there has been an explosion of interest
in cosmological models whose space-like cross sections are not simply
connected [11]. Indeed, physicists have not presented any reasons for
preferring simply connected models except a vague feeling that such
models are “simpler” than multiply connected ones.

In this note we present a family of topological spaces in which the
requirement of simple connectivity is weakened to the condition that
the “space-like” submanifolds are homology 3-spheres. These spaces
have the feature that their geometric properties are underlain by exotic
topological structure at the singular point.

The construction. Let S1, . . . , Sk be a collection of 2-spheres, let Γ
be an acyclic graph on vertices v1, . . . , vk, and let w1, . . . , wk be integer
“weights” assigned to the vertices. Denote by Ei, i = 1, . . . , k, the total
space of the 2-plane bundle on Si with Euler number −wi. Plumb these
spaces together according to the prescription of the graph Γ. That is,
locally identify the zero section of Ei with a fiber of Ej, and vice versa,
whenever vi meets vj in Γ. Let M denote the compact three-manifold
obtained by taking the union of the plumbed unit circle bundles of the
Ei’s, and smoothing the corners. Finally, let X be the space obtained
by collapsing the zero sections to a point P . The resulting space X is
homeomorphic to the cone on M , and is a smooth four-manifold except
at the singular point P .

Theorem ([2]). For Γ, w1, . . . , wk as above, denote by A(Γ) the “dual
intersection matrix” diag(w1, . . . , wk) — adjacency matrix of Γ. Then
the 3-fold M of the construction is a homology 3-sphere if and only if
the determinant of A(Γ) = ±1.

Moreover, if A(Γ) is positive definite, then X admits the structure of
a two-(complex)-dimensional complex algebraic variety, with a unique
singular point at the origin [6]. Since the germ of the variety at the
singular point determines the topology of the entire space, such singular



TOPOLOGICAL SINGULARITIES IN COSMOLOGY 25

complex surfaces provide an interesting setting in which to study the
relations between the topology and the geometry, hence the physics, of
big bang models in cosmology, with the compact homology 3-spheres
M playing the role of the space-like submanifolds in space-time. The
central question motivating this inquiry is this:

Guiding question: To what extent are the geometrical and physical
properties of big bang space-time models determined by the topology
of the singular point?

Egyptian fractions. One way to obtain particular examples of such
spaces is as follows.

Theorem ([3]). Let n1, . . . , nk be a solution in positive integers to one
of the two unit fraction Diophantine equations

(∗) Σ1/ni = 1± 1/Πni.

In the “minus” case, let Γ be the star graph with a central vertex of
weight w0 = 1, and with k arms of length 1, with weight wi = ni on
the single vertex of the ith arm. In the “plus” case, we take Γ to be the
star-shaped graph whose central vertex has weight w0 = k−1 and whose
ith arm consists of k − 1 vertices, each of weight 2. Then the 3-fold
M = M(Γ, n1, . . . , nk) of the construction outlined above is a homology
3-sphere.

This raises a question in number theory, which is interesting in its
own right and which enjoys a distinguished history dating back 4000
years to dynastic Egypt [4, 16, 17]: For fixed k, find all solutions in pos-
itive integers n1, . . . , nk to the equations (∗). Not only is this a fun and
instructive problem, but also it is one that undergraduate students can
understand and tackle. With motivation from the geometry of complex
surfaces and the possible relevance of this topic to cosmological mod-
els, the Wayne State Undergraduate Research Group (“Surge” – the
W in the acronym is silent) has attacked this problem with great vigor.
After several semesters of work by of a total of 33 students involved
in the program, the students, much to my pride and joy, succeeded
in producing the complete list of all solutions through k = 8. There
are 160 solutions to the minus equation and 598 solutions to the plus
equation in this range [10, 12].

Examples. The most intensively studied example is the equation

1/2 + 1/3 + 1/5 = 1 + 1/30.

The corresponding weighted graph Γ is the Dynkin diagram (Coxeter
graph) E8 of the root system of the simple complex Lie algebra e8.
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The associated complex surface singularity is the rational double point
given in complex co-ordinates x, y, z on C3 as the zero set

(a) {x2 + y3 + z5 = 0} ⊂ C3

The compact 3-fold M of the construction of this paper for this
weighted graph is homeomorphic to the Poincaré 120-cell [14]. The
first homotopy group is the group of rigid motions of the dodecahedron.
This is a well-known finite perfect group of order 120; its Abelianization
is trivial, hence M is a homology 3-sphere as required.

The simply connected covering space in this example is S3. In fact,
M is obtained by a tiling of S3 by 120 “twisted” dodecahedra. Thus M
inherits a homogeneous, isotropic line element dσ of constant positive
curvature from S3. As above, let X denote the cone on M , and de-
fine a metric on X by ds2 = −t4/3dt2 + dσ2. The resultant space-time
model, via the Einstein field equations, satisfies the physical require-
ments of spatially homogeneous distribution of matter, decreasing in
density proportionally to t−2 from an infinitely dense big bang singular-
ity. This model is indistinguishable locally from the matter-dominated
“dust” model in standard cohomology. In principle its validity could
be verified by the discovery of “ghosts”—multiple sightings of the same
galaxy cluster in different directions—or by analyses of distinctive pat-
terns of inhomogeneities in the cosmic microwave background radiation.
Serious experiments are underway by astronomers seeking to detect just
such heavenly anomalies (mostly working in the context of the 3-torus
model), but so far without success [20].

In [1] I gave the details of a similar treatment of the complex hyper-
surface

(b) {x2 + y3 + z6 = 0} ⊂ C3.

Since 1, 2, and 6, do not satisfy either of the relations (∗) we do not
obtain a homology 3-sphere by the construction of this paper. How-
ever, if we intersect this complex variety X with a 5-sphere in C3, the
intersection is a smooth compact 3-fold M and X is locally the cone
on M [13]. Thus the topological space X is a candidate for a big bang
space-time model.

This 3-fold M turns out to be homeomorpic to a non-trivial S1-
bundle on the 2-torus, with H1(M, Z) = Z⊕Z. Furthermore, M admits
naturally a metric that extends to a Robertson-Walker metric on the
cone X and which is homogeneous on the space-like cross sections [18].
The metric is not, however, fully isotropic; the physical result is a tiny
amount of universal pressure in the direction of the fiber of M , regarded
as a circle bundle on T 2. See [1] for the details of the geometry and
physical interpretation of this model.) This space-time begins in a
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singular point of infinite density and pressure, expands to a maximum
size, and then contracts symmetrically to a “big crunch.” Indeed, the
“size” R(t) of the universe at time t is given by the inverse relation

(∗∗) t/(2C) = arcsin
√

R/C −
√

(R/C)(1−R/C)

where C is a constant of integration representing the maximum size of
the universe at the end of the expansion phase.

Open question: Are these physical properties of the model deter-
mined by the topology at the singular point, or do they vary with
choice of metric?

To complete this cycle of ideas, consider the complex variety

(c) {x2 + y3 + z7 = 0} ⊂ C3.

Since 1/2 + 1/3 + 1/7 = 1 − 1/(2 ∗ 3 ∗ 7) (the “minus” version of
equation (∗)), we obtain a very inviting topological space X, the cone
on a homology 3-sphere M , whose singularity at the origin is very
well understood by algebraic geometers [20]. The fundamental group
is presented by generators α, β, γ, ω, with relations α2 = β3 = γ7 =
αβγ = ω. This group is an infinite perfect group that is a non-trivial
central extension by Z of the group of symmetries of the tiling of the
Poincaré disc by triangles with angles π/2, π/3, and π/7.

Open question: Does there exist a homogeneous Lorentzian metric
on this singular space-time candidate, which exhibits realistic physical
properties?
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